MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpq Unicode version

Theorem mulerpq 8583
Description: Multiplication is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpq  |-  ( ( /Q `  A )  .Q  ( /Q `  B ) )  =  ( /Q `  ( A  .pQ  B ) )

Proof of Theorem mulerpq
StepHypRef Expression
1 nqercl 8557 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( /Q
`  A )  e. 
Q. )
2 nqercl 8557 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( /Q
`  B )  e. 
Q. )
3 mulpqnq 8567 . . . 4  |-  ( ( ( /Q `  A
)  e.  Q.  /\  ( /Q `  B )  e.  Q. )  -> 
( ( /Q `  A )  .Q  ( /Q `  B ) )  =  ( /Q `  ( ( /Q `  A )  .pQ  ( /Q `  B ) ) ) )
41, 2, 3syl2an 463 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  .Q  ( /Q
`  B ) )  =  ( /Q `  ( ( /Q `  A )  .pQ  ( /Q `  B ) ) ) )
5 enqer 8547 . . . . . 6  |-  ~Q  Er  ( N.  X.  N. )
65a1i 10 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ~Q  Er  ( N.  X.  N. )
)
7 nqerrel 8558 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  A  ~Q  ( /Q `  A ) )
87adantr 451 . . . . . 6  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  A  ~Q  ( /Q `  A
) )
9 elpqn 8551 . . . . . . . . 9  |-  ( ( /Q `  A )  e.  Q.  ->  ( /Q `  A )  e.  ( N.  X.  N. ) )
101, 9syl 15 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( /Q
`  A )  e.  ( N.  X.  N. ) )
11 mulerpqlem 8581 . . . . . . . . 9  |-  ( ( A  e.  ( N. 
X.  N. )  /\  ( /Q `  A )  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  ( /Q `  A
)  <->  ( A  .pQ  B )  ~Q  ( ( /Q `  A ) 
.pQ  B ) ) )
12113exp 1150 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  ( B  e.  ( N.  X.  N. )  ->  ( A  ~Q  ( /Q `  A )  <->  ( A  .pQ  B )  ~Q  (
( /Q `  A
)  .pQ  B )
) ) ) )
1310, 12mpd 14 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( B  e.  ( N.  X.  N. )  ->  ( A  ~Q  ( /Q `  A )  <->  ( A  .pQ  B )  ~Q  (
( /Q `  A
)  .pQ  B )
) ) )
1413imp 418 . . . . . 6  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  ( /Q `  A )  <->  ( A  .pQ  B )  ~Q  (
( /Q `  A
)  .pQ  B )
) )
158, 14mpbid 201 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  ~Q  ( ( /Q `  A )  .pQ  B
) )
16 nqerrel 8558 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  B  ~Q  ( /Q `  B ) )
1716adantl 452 . . . . . . 7  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  B  ~Q  ( /Q `  B
) )
18 elpqn 8551 . . . . . . . . . 10  |-  ( ( /Q `  B )  e.  Q.  ->  ( /Q `  B )  e.  ( N.  X.  N. ) )
192, 18syl 15 . . . . . . . . 9  |-  ( B  e.  ( N.  X.  N. )  ->  ( /Q
`  B )  e.  ( N.  X.  N. ) )
20 mulerpqlem 8581 . . . . . . . . . 10  |-  ( ( B  e.  ( N. 
X.  N. )  /\  ( /Q `  B )  e.  ( N.  X.  N. )  /\  ( /Q `  A )  e.  ( N.  X.  N. )
)  ->  ( B  ~Q  ( /Q `  B
)  <->  ( B  .pQ  ( /Q `  A ) )  ~Q  ( ( /Q `  B ) 
.pQ  ( /Q `  A ) ) ) )
21203exp 1150 . . . . . . . . 9  |-  ( B  e.  ( N.  X.  N. )  ->  ( ( /Q `  B )  e.  ( N.  X.  N. )  ->  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  ( B  ~Q  ( /Q `  B )  <->  ( B  .pQ  ( /Q `  A
) )  ~Q  (
( /Q `  B
)  .pQ  ( /Q `  A ) ) ) ) ) )
2219, 21mpd 14 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  ( B  ~Q  ( /Q `  B )  <->  ( B  .pQ  ( /Q `  A
) )  ~Q  (
( /Q `  B
)  .pQ  ( /Q `  A ) ) ) ) )
2310, 22mpan9 455 . . . . . . 7  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( B  ~Q  ( /Q `  B )  <->  ( B  .pQ  ( /Q `  A
) )  ~Q  (
( /Q `  B
)  .pQ  ( /Q `  A ) ) ) )
2417, 23mpbid 201 . . . . . 6  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( B  .pQ  ( /Q `  A ) )  ~Q  ( ( /Q `  B )  .pQ  ( /Q `  A ) ) )
25 mulcompq 8578 . . . . . 6  |-  ( B 
.pQ  ( /Q `  A ) )  =  ( ( /Q `  A )  .pQ  B
)
26 mulcompq 8578 . . . . . 6  |-  ( ( /Q `  B ) 
.pQ  ( /Q `  A ) )  =  ( ( /Q `  A )  .pQ  ( /Q `  B ) )
2724, 25, 263brtr3g 4056 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  .pQ  B )  ~Q  ( ( /Q `  A )  .pQ  ( /Q `  B ) ) )
286, 15, 27ertrd 6678 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  ~Q  ( ( /Q `  A )  .pQ  ( /Q `  B ) ) )
29 mulpqf 8572 . . . . . 6  |-  .pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
3029fovcl 5951 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  e.  ( N.  X.  N. ) )
3129fovcl 5951 . . . . . 6  |-  ( ( ( /Q `  A
)  e.  ( N. 
X.  N. )  /\  ( /Q `  B )  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  .pQ  ( /Q `  B ) )  e.  ( N.  X.  N. ) )
3210, 19, 31syl2an 463 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  .pQ  ( /Q `  B ) )  e.  ( N.  X.  N. ) )
33 nqereq 8561 . . . . 5  |-  ( ( ( A  .pQ  B
)  e.  ( N. 
X.  N. )  /\  (
( /Q `  A
)  .pQ  ( /Q `  B ) )  e.  ( N.  X.  N. ) )  ->  (
( A  .pQ  B
)  ~Q  ( ( /Q `  A )  .pQ  ( /Q `  B ) )  <->  ( /Q `  ( A  .pQ  B ) )  =  ( /Q
`  ( ( /Q
`  A )  .pQ  ( /Q `  B ) ) ) ) )
3430, 32, 33syl2anc 642 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( A  .pQ  B
)  ~Q  ( ( /Q `  A )  .pQ  ( /Q `  B ) )  <->  ( /Q `  ( A  .pQ  B ) )  =  ( /Q
`  ( ( /Q
`  A )  .pQ  ( /Q `  B ) ) ) ) )
3528, 34mpbid 201 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( /Q `  ( A  .pQ  B ) )  =  ( /Q `  ( ( /Q `  A ) 
.pQ  ( /Q `  B ) ) ) )
364, 35eqtr4d 2320 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  .Q  ( /Q
`  B ) )  =  ( /Q `  ( A  .pQ  B ) ) )
37 0nnq 8550 . . . . . . . 8  |-  -.  (/)  e.  Q.
38 nqerf 8556 . . . . . . . . . . . 12  |-  /Q :
( N.  X.  N. )
--> Q.
3938fdmi 5396 . . . . . . . . . . 11  |-  dom  /Q  =  ( N.  X.  N. )
4039eleq2i 2349 . . . . . . . . . 10  |-  ( A  e.  dom  /Q  <->  A  e.  ( N.  X.  N. )
)
41 ndmfv 5554 . . . . . . . . . 10  |-  ( -.  A  e.  dom  /Q  ->  ( /Q `  A
)  =  (/) )
4240, 41sylnbir 298 . . . . . . . . 9  |-  ( -.  A  e.  ( N. 
X.  N. )  ->  ( /Q `  A )  =  (/) )
4342eleq1d 2351 . . . . . . . 8  |-  ( -.  A  e.  ( N. 
X.  N. )  ->  (
( /Q `  A
)  e.  Q.  <->  (/)  e.  Q. ) )
4437, 43mtbiri 294 . . . . . . 7  |-  ( -.  A  e.  ( N. 
X.  N. )  ->  -.  ( /Q `  A )  e.  Q. )
4544con4i 122 . . . . . 6  |-  ( ( /Q `  A )  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
4639eleq2i 2349 . . . . . . . . . 10  |-  ( B  e.  dom  /Q  <->  B  e.  ( N.  X.  N. )
)
47 ndmfv 5554 . . . . . . . . . 10  |-  ( -.  B  e.  dom  /Q  ->  ( /Q `  B
)  =  (/) )
4846, 47sylnbir 298 . . . . . . . . 9  |-  ( -.  B  e.  ( N. 
X.  N. )  ->  ( /Q `  B )  =  (/) )
4948eleq1d 2351 . . . . . . . 8  |-  ( -.  B  e.  ( N. 
X.  N. )  ->  (
( /Q `  B
)  e.  Q.  <->  (/)  e.  Q. ) )
5037, 49mtbiri 294 . . . . . . 7  |-  ( -.  B  e.  ( N. 
X.  N. )  ->  -.  ( /Q `  B )  e.  Q. )
5150con4i 122 . . . . . 6  |-  ( ( /Q `  B )  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
5245, 51anim12i 549 . . . . 5  |-  ( ( ( /Q `  A
)  e.  Q.  /\  ( /Q `  B )  e.  Q. )  -> 
( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) ) )
5352con3i 127 . . . 4  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  -.  ( ( /Q `  A )  e. 
Q.  /\  ( /Q `  B )  e.  Q. ) )
54 mulnqf 8575 . . . . . 6  |-  .Q  :
( Q.  X.  Q. )
--> Q.
5554fdmi 5396 . . . . 5  |-  dom  .Q  =  ( Q.  X.  Q. )
5655ndmov 6006 . . . 4  |-  ( -.  ( ( /Q `  A )  e.  Q.  /\  ( /Q `  B
)  e.  Q. )  ->  ( ( /Q `  A )  .Q  ( /Q `  B ) )  =  (/) )
5753, 56syl 15 . . 3  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( ( /Q
`  A )  .Q  ( /Q `  B
) )  =  (/) )
58 0nelxp 4719 . . . . . 6  |-  -.  (/)  e.  ( N.  X.  N. )
5939eleq2i 2349 . . . . . 6  |-  ( (/)  e.  dom  /Q  <->  (/)  e.  ( N.  X.  N. )
)
6058, 59mtbir 290 . . . . 5  |-  -.  (/)  e.  dom  /Q
6129fdmi 5396 . . . . . . 7  |-  dom  .pQ  =  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) )
6261ndmov 6006 . . . . . 6  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  =  (/) )
6362eleq1d 2351 . . . . 5  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( ( A 
.pQ  B )  e. 
dom  /Q  <->  (/)  e.  dom  /Q ) )
6460, 63mtbiri 294 . . . 4  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  -.  ( A  .pQ  B )  e.  dom  /Q )
65 ndmfv 5554 . . . 4  |-  ( -.  ( A  .pQ  B
)  e.  dom  /Q  ->  ( /Q `  ( A  .pQ  B ) )  =  (/) )
6664, 65syl 15 . . 3  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( /Q `  ( A  .pQ  B ) )  =  (/) )
6757, 66eqtr4d 2320 . 2  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( ( /Q
`  A )  .Q  ( /Q `  B
) )  =  ( /Q `  ( A 
.pQ  B ) ) )
6836, 67pm2.61i 156 1  |-  ( ( /Q `  A )  .Q  ( /Q `  B ) )  =  ( /Q `  ( A  .pQ  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   (/)c0 3457   class class class wbr 4025    X. cxp 4689   dom cdm 4691   ` cfv 5257  (class class class)co 5860    Er wer 6659   N.cnpi 8468    .pQ cmpq 8473    ~Q ceq 8475   Q.cnq 8476   /Qcerq 8478    .Q cmq 8480
This theorem is referenced by:  mulassnq  8585  distrnq  8587  recmulnq  8590
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-omul 6486  df-er 6662  df-ni 8498  df-mi 8500  df-lti 8501  df-mpq 8535  df-enq 8537  df-nq 8538  df-erq 8539  df-mq 8541  df-1nq 8542
  Copyright terms: Public domain W3C validator