MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexp Unicode version

Theorem mulexp 11072
Description: Natural number exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulexp  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )

Proof of Theorem mulexp
StepHypRef Expression
1 oveq2 5765 . . . . . 6  |-  ( j  =  0  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^
0 ) )
2 oveq2 5765 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
3 oveq2 5765 . . . . . . 7  |-  ( j  =  0  ->  ( B ^ j )  =  ( B ^ 0 ) )
42, 3oveq12d 5775 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) )
51, 4eqeq12d 2270 . . . . 5  |-  ( j  =  0  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ 0 )  =  ( ( A ^
0 )  x.  ( B ^ 0 ) ) ) )
65imbi2d 309 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ 0 )  =  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) ) ) )
7 oveq2 5765 . . . . . 6  |-  ( j  =  k  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^
k ) )
8 oveq2 5765 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
9 oveq2 5765 . . . . . . 7  |-  ( j  =  k  ->  ( B ^ j )  =  ( B ^ k
) )
108, 9oveq12d 5775 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )
117, 10eqeq12d 2270 . . . . 5  |-  ( j  =  k  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ k )  =  ( ( A ^
k )  x.  ( B ^ k ) ) ) )
1211imbi2d 309 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) ) ) )
13 oveq2 5765 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^
( k  +  1 ) ) )
14 oveq2 5765 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
15 oveq2 5765 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( B ^ j )  =  ( B ^ (
k  +  1 ) ) )
1614, 15oveq12d 5775 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) ) )
1713, 16eqeq12d 2270 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ ( k  +  1 ) )  =  ( ( A ^
( k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) ) )
1817imbi2d 309 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ ( k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) ) ) ) )
19 oveq2 5765 . . . . . 6  |-  ( j  =  N  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^ N ) )
20 oveq2 5765 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
21 oveq2 5765 . . . . . . 7  |-  ( j  =  N  ->  ( B ^ j )  =  ( B ^ N
) )
2220, 21oveq12d 5775 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
2319, 22eqeq12d 2270 . . . . 5  |-  ( j  =  N  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ N )  =  ( ( A ^ N
)  x.  ( B ^ N ) ) ) )
2423imbi2d 309 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) ) ) )
25 mulcl 8754 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
26 exp0 11039 . . . . . 6  |-  ( ( A  x.  B )  e.  CC  ->  (
( A  x.  B
) ^ 0 )  =  1 )
2725, 26syl 17 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^ 0 )  =  1 )
28 exp0 11039 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
29 exp0 11039 . . . . . . 7  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
3028, 29oveqan12d 5776 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  ( 1  x.  1 ) )
31 1t1e1 9802 . . . . . 6  |-  ( 1  x.  1 )  =  1
3230, 31syl6eq 2304 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  1 )
3327, 32eqtr4d 2291 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^ 0 )  =  ( ( A ^ 0 )  x.  ( B ^
0 ) ) )
34 expp1 11041 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( A  x.  B ) ^ (
k  +  1 ) )  =  ( ( ( A  x.  B
) ^ k )  x.  ( A  x.  B ) ) )
3525, 34sylan 459 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  x.  B ) ^
( k  +  1 ) )  =  ( ( ( A  x.  B ) ^ k
)  x.  ( A  x.  B ) ) )
3635adantr 453 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )  -> 
( ( A  x.  B ) ^ (
k  +  1 ) )  =  ( ( ( A  x.  B
) ^ k )  x.  ( A  x.  B ) ) )
37 oveq1 5764 . . . . . . . . 9  |-  ( ( ( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) )  ->  (
( ( A  x.  B ) ^ k
)  x.  ( A  x.  B ) )  =  ( ( ( A ^ k )  x.  ( B ^
k ) )  x.  ( A  x.  B
) ) )
38 expcl 11052 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
39 expcl 11052 . . . . . . . . . . . . 13  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  CC )
4038, 39anim12i 551 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( B  e.  CC  /\  k  e.  NN0 )
)  ->  ( ( A ^ k )  e.  CC  /\  ( B ^ k )  e.  CC ) )
4140anandirs 807 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A ^ k )  e.  CC  /\  ( B ^ k )  e.  CC ) )
42 simpl 445 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  e.  CC  /\  B  e.  CC ) )
43 mul4 8914 . . . . . . . . . . 11  |-  ( ( ( ( A ^
k )  e.  CC  /\  ( B ^ k
)  e.  CC )  /\  ( A  e.  CC  /\  B  e.  CC ) )  -> 
( ( ( A ^ k )  x.  ( B ^ k
) )  x.  ( A  x.  B )
)  =  ( ( ( A ^ k
)  x.  A )  x.  ( ( B ^ k )  x.  B ) ) )
4441, 42, 43syl2anc 645 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( ( A ^ k )  x.  ( B ^
k ) )  x.  ( A  x.  B
) )  =  ( ( ( A ^
k )  x.  A
)  x.  ( ( B ^ k )  x.  B ) ) )
45 expp1 11041 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
4645adantlr 698 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
47 expp1 11041 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
4847adantll 697 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
4946, 48oveq12d 5775 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) )  =  ( ( ( A ^
k )  x.  A
)  x.  ( ( B ^ k )  x.  B ) ) )
5044, 49eqtr4d 2291 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( ( A ^ k )  x.  ( B ^
k ) )  x.  ( A  x.  B
) )  =  ( ( A ^ (
k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) )
5137, 50sylan9eqr 2310 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )  -> 
( ( ( A  x.  B ) ^
k )  x.  ( A  x.  B )
)  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^
( k  +  1 ) ) ) )
5236, 51eqtrd 2288 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )  -> 
( ( A  x.  B ) ^ (
k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^
( k  +  1 ) ) ) )
5352exp31 590 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( k  e.  NN0  ->  ( ( ( A  x.  B ) ^
k )  =  ( ( A ^ k
)  x.  ( B ^ k ) )  ->  ( ( A  x.  B ) ^
( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) ) ) )
5453com12 29 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B ) ^
k )  =  ( ( A ^ k
)  x.  ( B ^ k ) )  ->  ( ( A  x.  B ) ^
( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) ) ) )
5554a2d 25 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^
k )  =  ( ( A ^ k
)  x.  ( B ^ k ) ) )  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ ( k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) ) ) ) )
566, 12, 18, 24, 33, 55nn0ind 10040 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) ) )
5756exp3acom3r 1366 . 2  |-  ( A  e.  CC  ->  ( B  e.  CC  ->  ( N  e.  NN0  ->  ( ( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) ) ) )
58573imp 1150 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621  (class class class)co 5757   CCcc 8668   0cc0 8670   1c1 8671    + caddc 8673    x. cmul 8675   NN0cn0 9897   ^cexp 11035
This theorem is referenced by:  mulexpz  11073  expdiv  11083  expubnd  11093  sqmul  11098  mulexpd  11191  efi4p  12344  logtayl2  19936  ipidsq  21211  stoweidlem1  27050  stoweidlem24  27073
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-n 9680  df-n0 9898  df-z 9957  df-uz 10163  df-seq 10978  df-exp 11036
  Copyright terms: Public domain W3C validator