MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnass Structured version   Unicode version

Theorem mulgnnass 14920
Description: Product of group multiples, for positive multiples. TODO: This can be generalized to a semigroup if/when we introduce them. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgnnass  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )

Proof of Theorem mulgnnass
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6090 . . . . . . . 8  |-  ( n  =  1  ->  (
n  x.  N )  =  ( 1  x.  N ) )
21oveq1d 6098 . . . . . . 7  |-  ( n  =  1  ->  (
( n  x.  N
)  .x.  X )  =  ( ( 1  x.  N )  .x.  X ) )
3 oveq1 6090 . . . . . . 7  |-  ( n  =  1  ->  (
n  .x.  ( N  .x.  X ) )  =  ( 1  .x.  ( N  .x.  X ) ) )
42, 3eqeq12d 2452 . . . . . 6  |-  ( n  =  1  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
1  x.  N ) 
.x.  X )  =  ( 1  .x.  ( N  .x.  X ) ) ) )
54imbi2d 309 . . . . 5  |-  ( n  =  1  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( n  x.  N
)  .x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( 1  x.  N
)  .x.  X )  =  ( 1  .x.  ( N  .x.  X
) ) ) ) )
6 oveq1 6090 . . . . . . . 8  |-  ( n  =  m  ->  (
n  x.  N )  =  ( m  x.  N ) )
76oveq1d 6098 . . . . . . 7  |-  ( n  =  m  ->  (
( n  x.  N
)  .x.  X )  =  ( ( m  x.  N )  .x.  X ) )
8 oveq1 6090 . . . . . . 7  |-  ( n  =  m  ->  (
n  .x.  ( N  .x.  X ) )  =  ( m  .x.  ( N  .x.  X ) ) )
97, 8eqeq12d 2452 . . . . . 6  |-  ( n  =  m  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) )
109imbi2d 309 . . . . 5  |-  ( n  =  m  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( n  x.  N
)  .x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) ) )
11 oveq1 6090 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  (
n  x.  N )  =  ( ( m  +  1 )  x.  N ) )
1211oveq1d 6098 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
( n  x.  N
)  .x.  X )  =  ( ( ( m  +  1 )  x.  N )  .x.  X ) )
13 oveq1 6090 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
n  .x.  ( N  .x.  X ) )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) )
1412, 13eqeq12d 2452 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) )
1514imbi2d 309 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( n  x.  N
)  .x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( ( m  + 
1 )  x.  N
)  .x.  X )  =  ( ( m  +  1 )  .x.  ( N  .x.  X ) ) ) ) )
16 oveq1 6090 . . . . . . . 8  |-  ( n  =  M  ->  (
n  x.  N )  =  ( M  x.  N ) )
1716oveq1d 6098 . . . . . . 7  |-  ( n  =  M  ->  (
( n  x.  N
)  .x.  X )  =  ( ( M  x.  N )  .x.  X ) )
18 oveq1 6090 . . . . . . 7  |-  ( n  =  M  ->  (
n  .x.  ( N  .x.  X ) )  =  ( M  .x.  ( N  .x.  X ) ) )
1917, 18eqeq12d 2452 . . . . . 6  |-  ( n  =  M  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
2019imbi2d 309 . . . . 5  |-  ( n  =  M  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( n  x.  N
)  .x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) ) )
21 nncn 10010 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
2221mulid2d 9108 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  x.  N )  =  N )
23223ad2ant1 979 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( 1  x.  N
)  =  N )
2423oveq1d 6098 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( ( 1  x.  N )  .x.  X
)  =  ( N 
.x.  X ) )
25 mulgass.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
26 mulgass.t . . . . . . . . 9  |-  .x.  =  (.g
`  G )
2725, 26mulgnncl 14907 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
28273coml 1161 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( N  .x.  X
)  e.  B )
2925, 26mulg1 14899 . . . . . . 7  |-  ( ( N  .x.  X )  e.  B  ->  (
1  .x.  ( N  .x.  X ) )  =  ( N  .x.  X
) )
3028, 29syl 16 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( 1  .x.  ( N  .x.  X ) )  =  ( N  .x.  X ) )
3124, 30eqtr4d 2473 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( ( 1  x.  N )  .x.  X
)  =  ( 1 
.x.  ( N  .x.  X ) ) )
32 oveq1 6090 . . . . . . . 8  |-  ( ( ( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) )  ->  ( (
( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) )  =  ( ( m  .x.  ( N  .x.  X ) ) ( +g  `  G
) ( N  .x.  X ) ) )
33 nncn 10010 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  CC )
3433adantr 453 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  m  e.  CC )
35 ax-1cn 9050 . . . . . . . . . . . . . 14  |-  1  e.  CC
3635a1i 11 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  1  e.  CC )
37 simpr1 964 . . . . . . . . . . . . . 14  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  N  e.  NN )
3837nncnd 10018 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  N  e.  CC )
3934, 36, 38adddird 9115 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
m  +  1 )  x.  N )  =  ( ( m  x.  N )  +  ( 1  x.  N ) ) )
4023adantl 454 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( 1  x.  N )  =  N )
4140oveq2d 6099 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
m  x.  N )  +  ( 1  x.  N ) )  =  ( ( m  x.  N )  +  N
) )
4239, 41eqtrd 2470 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
m  +  1 )  x.  N )  =  ( ( m  x.  N )  +  N
) )
4342oveq1d 6098 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( ( m  x.  N )  +  N )  .x.  X
) )
44 simpr3 966 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  G  e.  Mnd )
45 nnmulcl 10025 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  N  e.  NN )  ->  ( m  x.  N
)  e.  NN )
46453ad2antr1 1123 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( m  x.  N )  e.  NN )
47 simpr2 965 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  X  e.  B )
48 eqid 2438 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
4925, 26, 48mulgnndir 14914 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  ( ( m  x.  N )  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( (
( m  x.  N
)  +  N ) 
.x.  X )  =  ( ( ( m  x.  N )  .x.  X ) ( +g  `  G ) ( N 
.x.  X ) ) )
5044, 46, 37, 47, 49syl13anc 1187 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
( m  x.  N
)  +  N ) 
.x.  X )  =  ( ( ( m  x.  N )  .x.  X ) ( +g  `  G ) ( N 
.x.  X ) ) )
5143, 50eqtrd 2470 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( ( m  x.  N )  .x.  X ) ( +g  `  G ) ( N 
.x.  X ) ) )
5225, 26, 48mulgnnp1 14900 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  .x.  X )  e.  B )  -> 
( ( m  + 
1 )  .x.  ( N  .x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) )
5328, 52sylan2 462 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
m  +  1 ) 
.x.  ( N  .x.  X ) )  =  ( ( m  .x.  ( N  .x.  X ) ) ( +g  `  G
) ( N  .x.  X ) ) )
5451, 53eqeq12d 2452 . . . . . . . 8  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
( ( m  + 
1 )  x.  N
)  .x.  X )  =  ( ( m  +  1 )  .x.  ( N  .x.  X ) )  <->  ( ( ( m  x.  N ) 
.x.  X ) ( +g  `  G ) ( N  .x.  X
) )  =  ( ( m  .x.  ( N  .x.  X ) ) ( +g  `  G
) ( N  .x.  X ) ) ) )
5532, 54syl5ibr 214 . . . . . . 7  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) )  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) )
5655ex 425 . . . . . 6  |-  ( m  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( ( ( m  x.  N )  .x.  X )  =  ( m  .x.  ( N 
.x.  X ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X )  =  ( ( m  +  1 )  .x.  ( N 
.x.  X ) ) ) ) )
5756a2d 25 . . . . 5  |-  ( m  e.  NN  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) ) )  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( m  +  1 ) 
.x.  ( N  .x.  X ) ) ) ) )
585, 10, 15, 20, 31, 57nnind 10020 . . . 4  |-  ( M  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
59583expd 1171 . . 3  |-  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  -> 
( G  e.  Mnd  ->  ( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) ) ) )
6059com4r 83 . 2  |-  ( G  e.  Mnd  ->  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) ) ) )
61603imp2 1169 1  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   ` cfv 5456  (class class class)co 6083   CCcc 8990   1c1 8993    + caddc 8995    x. cmul 8997   NNcn 10002   Basecbs 13471   +g cplusg 13531   Mndcmnd 14686  .gcmg 14691
This theorem is referenced by:  mulgnn0ass  14921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-seq 11326  df-mnd 14692  df-mulg 14817
  Copyright terms: Public domain W3C validator