MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0sr Structured version   Unicode version

Theorem mulgt0sr 8980
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulgt0sr  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) )

Proof of Theorem mulgt0sr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 8946 . . . . 5  |-  <R  C_  ( R.  X.  R. )
21brel 4926 . . . 4  |-  ( 0R 
<R  A  ->  ( 0R  e.  R.  /\  A  e.  R. ) )
32simprd 450 . . 3  |-  ( 0R 
<R  A  ->  A  e. 
R. )
41brel 4926 . . . 4  |-  ( 0R 
<R  B  ->  ( 0R  e.  R.  /\  B  e.  R. ) )
54simprd 450 . . 3  |-  ( 0R 
<R  B  ->  B  e. 
R. )
63, 5anim12i 550 . 2  |-  ( ( 0R  <R  A  /\  0R  <R  B )  -> 
( A  e.  R.  /\  B  e.  R. )
)
7 df-nr 8935 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
8 breq2 4216 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( 0R  <R  [ <. x ,  y >. ]  ~R  <->  0R 
<R  A ) )
98anbi1d 686 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. x ,  y >. ]  ~R  /\  0R  <R  [
<. z ,  w >. ]  ~R  )  <->  ( 0R  <R  A  /\  0R  <R  [
<. z ,  w >. ]  ~R  ) ) )
10 oveq1 6088 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  =  ( A  .R  [ <. z ,  w >. ]  ~R  ) )
1110breq2d 4224 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( 0R  <R  ( [ <. x ,  y
>. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  <->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  ) ) )
129, 11imbi12d 312 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( ( 0R 
<R  [ <. x ,  y
>. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  ) )  <-> 
( ( 0R  <R  A  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  )
) ) )
13 breq2 4216 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( 0R  <R  [ <. z ,  w >. ]  ~R  <->  0R 
<R  B ) )
1413anbi2d 685 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( 0R  <R  A  /\  0R  <R  [ <. z ,  w >. ]  ~R  ) 
<->  ( 0R  <R  A  /\  0R  <R  B ) ) )
15 oveq2 6089 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  .R  [ <. z ,  w >. ]  ~R  )  =  ( A  .R  B ) )
1615breq2d 4224 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( 0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  )  <->  0R 
<R  ( A  .R  B
) ) )
1714, 16imbi12d 312 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( ( 0R 
<R  A  /\  0R  <R  [
<. z ,  w >. ]  ~R  )  ->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  ) )  <->  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B
) ) ) )
18 gt0srpr 8953 . . . . 5  |-  ( 0R 
<R  [ <. x ,  y
>. ]  ~R  <->  y  <P  x )
19 gt0srpr 8953 . . . . 5  |-  ( 0R 
<R  [ <. z ,  w >. ]  ~R  <->  w  <P  z )
2018, 19anbi12i 679 . . . 4  |-  ( ( 0R  <R  [ <. x ,  y >. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  <->  ( y  <P  x  /\  w  <P  z ) )
21 simprr 734 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  w  e.  P. )
22 mulclpr 8897 . . . . . . . 8  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
23 mulclpr 8897 . . . . . . . 8  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
24 addclpr 8895 . . . . . . . 8  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
2522, 23, 24syl2an 464 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
2625an4s 800 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
27 ltexpri 8920 . . . . . . . . 9  |-  ( y 
<P  x  ->  E. v  e.  P.  ( y  +P.  v )  =  x )
28 ltexpri 8920 . . . . . . . . 9  |-  ( w 
<P  z  ->  E. u  e.  P.  ( w  +P.  u )  =  z )
29 mulclpr 8897 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  P.  /\  w  e.  P. )  ->  ( v  .P.  w
)  e.  P. )
30 oveq12 6090 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( y  +P.  v )  .P.  (
w  +P.  u )
)  =  ( x  .P.  z ) )
3130oveq1d 6096 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( ( y  +P.  v )  .P.  ( w  +P.  u
) )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) ) )
32 distrpr 8905 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  .P.  ( w  +P.  u ) )  =  ( ( y  .P.  w )  +P.  (
y  .P.  u )
)
33 oveq2 6089 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( w  +P.  u )  =  z  ->  (
y  .P.  ( w  +P.  u ) )  =  ( y  .P.  z
) )
3432, 33syl5eqr 2482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( w  +P.  u )  =  z  ->  (
( y  .P.  w
)  +P.  ( y  .P.  u ) )  =  ( y  .P.  z
) )
3534oveq1d 6096 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( w  +P.  u )  =  z  ->  (
( ( y  .P.  w )  +P.  (
y  .P.  u )
)  +P.  ( (
v  .P.  w )  +P.  ( v  .P.  u
) ) )  =  ( ( y  .P.  z )  +P.  (
( v  .P.  w
)  +P.  ( v  .P.  u ) ) ) )
36 vex 2959 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  y  e. 
_V
37 vex 2959 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  v  e. 
_V
38 vex 2959 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  w  e. 
_V
39 mulcompr 8900 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  .P.  g )  =  ( g  .P.  f
)
40 distrpr 8905 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  .P.  ( g  +P.  h ) )  =  ( ( f  .P.  g )  +P.  (
f  .P.  h )
)
4136, 37, 38, 39, 40caovdir 6281 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  +P.  v )  .P.  w )  =  ( ( y  .P.  w )  +P.  (
v  .P.  w )
)
42 vex 2959 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  u  e. 
_V
4336, 37, 42, 39, 40caovdir 6281 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  +P.  v )  .P.  u )  =  ( ( y  .P.  u )  +P.  (
v  .P.  u )
)
4441, 43oveq12i 6093 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( y  +P.  v
)  .P.  w )  +P.  ( ( y  +P.  v )  .P.  u
) )  =  ( ( ( y  .P.  w )  +P.  (
v  .P.  w )
)  +P.  ( (
y  .P.  u )  +P.  ( v  .P.  u
) ) )
45 distrpr 8905 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  +P.  v )  .P.  ( w  +P.  u ) )  =  ( ( ( y  +P.  v )  .P.  w )  +P.  (
( y  +P.  v
)  .P.  u )
)
46 ovex 6106 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  .P.  w )  e. 
_V
47 ovex 6106 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  .P.  u )  e. 
_V
48 ovex 6106 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  .P.  w )  e. 
_V
49 addcompr 8898 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  +P.  g )  =  ( g  +P.  f
)
50 addasspr 8899 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  +P.  g )  +P.  h )  =  ( f  +P.  (
g  +P.  h )
)
51 ovex 6106 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  .P.  u )  e. 
_V
5246, 47, 48, 49, 50, 51caov4 6278 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( y  .P.  w
)  +P.  ( y  .P.  u ) )  +P.  ( ( v  .P.  w )  +P.  (
v  .P.  u )
) )  =  ( ( ( y  .P.  w )  +P.  (
v  .P.  w )
)  +P.  ( (
y  .P.  u )  +P.  ( v  .P.  u
) ) )
5344, 45, 523eqtr4i 2466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  +P.  v )  .P.  ( w  +P.  u ) )  =  ( ( ( y  .P.  w )  +P.  ( y  .P.  u
) )  +P.  (
( v  .P.  w
)  +P.  ( v  .P.  u ) ) )
54 ovex 6106 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  .P.  z )  e. 
_V
5548, 54, 51, 49, 50caov12 6275 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) )  =  ( ( y  .P.  z )  +P.  (
( v  .P.  w
)  +P.  ( v  .P.  u ) ) )
5635, 53, 553eqtr4g 2493 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( w  +P.  u )  =  z  ->  (
( y  +P.  v
)  .P.  ( w  +P.  u ) )  =  ( ( v  .P.  w )  +P.  (
( y  .P.  z
)  +P.  ( v  .P.  u ) ) ) )
57 oveq1 6088 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  +P.  v )  =  x  ->  (
( y  +P.  v
)  .P.  w )  =  ( x  .P.  w ) )
5841, 57syl5eqr 2482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  +P.  v )  =  x  ->  (
( y  .P.  w
)  +P.  ( v  .P.  w ) )  =  ( x  .P.  w
) )
5956, 58oveqan12rd 6101 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( ( y  +P.  v )  .P.  ( w  +P.  u
) )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( ( v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) ) )
6031, 59eqtr3d 2470 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( x  .P.  z )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( ( v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) ) )
61 addasspr 8899 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  +P.  ( v  .P.  w
) )  =  ( ( x  .P.  z
)  +P.  ( (
y  .P.  w )  +P.  ( v  .P.  w
) ) )
62 addcompr 8898 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  +P.  ( v  .P.  w
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  z )  +P.  ( y  .P.  w
) ) )
6361, 62eqtr3i 2458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  ( v  .P.  w
) ) )  =  ( ( v  .P.  w )  +P.  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
64 addasspr 8899 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( v  .P.  w
)  +P.  ( x  .P.  w ) )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  w )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) ) )
65 ovex 6106 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  .P.  z )  +P.  ( v  .P.  u ) )  e. 
_V
66 ovex 6106 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  .P.  w )  e. 
_V
6748, 65, 66, 49, 50caov32 6274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) )  =  ( ( ( v  .P.  w )  +P.  (
x  .P.  w )
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )
68 addasspr 8899 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )
6968oveq2i 6092 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( v  .P.  w )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )  =  ( ( v  .P.  w )  +P.  (
( x  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
7064, 67, 693eqtr4i 2466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )
7160, 63, 703eqtr3g 2491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( v  .P.  w )  +P.  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )  =  ( ( v  .P.  w )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
) ) )
72 addcanpr 8923 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( v  .P.  w )  +P.  ( ( x  .P.  z )  +P.  (
y  .P.  w )
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )  -> 
( ( x  .P.  z )  +P.  (
y  .P.  w )
)  =  ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) ) )
7371, 72syl5 30 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
) ) )
74 eqcom 2438 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
)  <->  ( ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
75 ltaddpr2 8912 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  ->  ( ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  -> 
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
7674, 75syl5bi 209 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  ->  ( ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
7776adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) )  -> 
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
7873, 77syld 42 . . . . . . . . . . . . . . . . 17  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
7929, 78sylan 458 . . . . . . . . . . . . . . . 16  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
8079a1d 23 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( u  e.  P.  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) ) )
8180exp4a 590 . . . . . . . . . . . . . 14  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( u  e.  P.  ->  ( ( y  +P.  v )  =  x  ->  ( ( w  +P.  u )  =  z  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) ) )
8281com34 79 . . . . . . . . . . . . 13  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( u  e.  P.  ->  ( ( w  +P.  u )  =  z  ->  ( ( y  +P.  v )  =  x  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) ) )
8382rexlimdv 2829 . . . . . . . . . . . 12  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( y  +P.  v )  =  x  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) )
8483expl 602 . . . . . . . . . . 11  |-  ( v  e.  P.  ->  (
( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( y  +P.  v )  =  x  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) ) )
8584com24 83 . . . . . . . . . 10  |-  ( v  e.  P.  ->  (
( y  +P.  v
)  =  x  -> 
( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( w  e.  P.  /\  (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P. )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) ) ) )
8685rexlimiv 2824 . . . . . . . . 9  |-  ( E. v  e.  P.  (
y  +P.  v )  =  x  ->  ( E. u  e.  P.  (
w  +P.  u )  =  z  ->  ( ( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) ) )
8727, 28, 86syl2im 36 . . . . . . . 8  |-  ( y 
<P  x  ->  ( w 
<P  z  ->  ( ( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) ) )
8887imp 419 . . . . . . 7  |-  ( ( y  <P  x  /\  w  <P  z )  -> 
( ( w  e. 
P.  /\  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )  ->  ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
8988com12 29 . . . . . 6  |-  ( ( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( y  <P  x  /\  w  <P  z
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
9021, 26, 89syl2anc 643 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  <P  x  /\  w  <P  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
91 mulsrpr 8951 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
9291breq2d 4224 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( 0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  <->  0R  <R  [
<. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  ) )
93 gt0srpr 8953 . . . . . 6  |-  ( 0R 
<R  [ <. ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ,  ( ( x  .P.  w
)  +P.  ( y  .P.  z ) ) >. ]  ~R  <->  ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
9492, 93syl6bb 253 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( 0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  <->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
9590, 94sylibrd 226 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  <P  x  /\  w  <P  z )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  ) ) )
9620, 95syl5bi 209 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( ( 0R  <R  [ <. x ,  y >. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  ) ) )
977, 12, 17, 962ecoptocl 6995 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) ) )
986, 97mpcom 34 1  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706   <.cop 3817   class class class wbr 4212  (class class class)co 6081   [cec 6903   P.cnp 8734    +P. cpp 8736    .P. cmp 8737    <P cltp 8738    ~R cer 8741   R.cnr 8742   0Rc0r 8743    .R cmr 8747    <R cltr 8748
This theorem is referenced by:  sqgt0sr  8981  axpre-mulgt0  9043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-omul 6729  df-er 6905  df-ec 6907  df-qs 6911  df-ni 8749  df-pli 8750  df-mi 8751  df-lti 8752  df-plpq 8785  df-mpq 8786  df-ltpq 8787  df-enq 8788  df-nq 8789  df-erq 8790  df-plq 8791  df-mq 8792  df-1nq 8793  df-rq 8794  df-ltnq 8795  df-np 8858  df-1p 8859  df-plp 8860  df-mp 8861  df-ltp 8862  df-mpr 8933  df-enr 8934  df-nr 8935  df-mr 8937  df-ltr 8938  df-0r 8939
  Copyright terms: Public domain W3C validator