MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt1 Structured version   Unicode version

Theorem mulgt1 9861
Description: The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulgt1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  1  <  ( A  x.  B
) )

Proof of Theorem mulgt1
StepHypRef Expression
1 simpl 444 . . . . 5  |-  ( ( 1  <  A  /\  1  <  B )  -> 
1  <  A )
21a1i 11 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  1  <  B )  ->  1  <  A ) )
3 0lt1 9542 . . . . . . . . 9  |-  0  <  1
4 0re 9083 . . . . . . . . . 10  |-  0  e.  RR
5 1re 9082 . . . . . . . . . 10  |-  1  e.  RR
6 lttr 9144 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
74, 5, 6mp3an12 1269 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
83, 7mpani 658 . . . . . . . 8  |-  ( A  e.  RR  ->  (
1  <  A  ->  0  <  A ) )
98adantr 452 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  A  ->  0  <  A ) )
10 ltmul2 9853 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( 1  <  B  <->  ( A  x.  1 )  <  ( A  x.  B ) ) )
1110biimpd 199 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( 1  <  B  ->  ( A  x.  1 )  <  ( A  x.  B ) ) )
125, 11mp3an1 1266 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( 1  <  B  ->  ( A  x.  1 )  <  ( A  x.  B ) ) )
1312exp32 589 . . . . . . . 8  |-  ( B  e.  RR  ->  ( A  e.  RR  ->  ( 0  <  A  -> 
( 1  <  B  ->  ( A  x.  1 )  <  ( A  x.  B ) ) ) ) )
1413impcom 420 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  A  ->  ( 1  <  B  ->  ( A  x.  1 )  <  ( A  x.  B ) ) ) )
159, 14syld 42 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  A  ->  ( 1  <  B  ->  ( A  x.  1 )  <  ( A  x.  B ) ) ) )
1615imp3a 421 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  1  <  B )  ->  ( A  x.  1 )  <  ( A  x.  B )
) )
17 ax-1rid 9052 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
1817adantr 452 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  1 )  =  A )
1918breq1d 4214 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  1 )  <  ( A  x.  B )  <->  A  <  ( A  x.  B ) ) )
2016, 19sylibd 206 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  1  <  B )  ->  A  <  ( A  x.  B ) ) )
212, 20jcad 520 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  1  <  B )  ->  ( 1  <  A  /\  A  <  ( A  x.  B
) ) ) )
22 remulcl 9067 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
23 lttr 9144 . . . . 5  |-  ( ( 1  e.  RR  /\  A  e.  RR  /\  ( A  x.  B )  e.  RR )  ->  (
( 1  <  A  /\  A  <  ( A  x.  B ) )  ->  1  <  ( A  x.  B )
) )
245, 23mp3an1 1266 . . . 4  |-  ( ( A  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( ( 1  <  A  /\  A  <  ( A  x.  B
) )  ->  1  <  ( A  x.  B
) ) )
2522, 24syldan 457 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  A  <  ( A  x.  B ) )  ->  1  <  ( A  x.  B ) ) )
2621, 25syld 42 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  1  <  B )  ->  1  <  ( A  x.  B ) ) )
2726imp 419 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  1  <  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204  (class class class)co 6073   RRcr 8981   0cc0 8982   1c1 8983    x. cmul 8987    < clt 9112
This theorem is referenced by:  mulgt1d  9939  addltmul  10195  uz2mulcl  10545  addltmulALT  23941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286
  Copyright terms: Public domain W3C validator