MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulneg1i Unicode version

Theorem mulneg1i 9463
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 10-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1.1  |-  A  e.  CC
mulneg.2  |-  B  e.  CC
Assertion
Ref Expression
mulneg1i  |-  ( -u A  x.  B )  =  -u ( A  x.  B )

Proof of Theorem mulneg1i
StepHypRef Expression
1 mulm1.1 . 2  |-  A  e.  CC
2 mulneg.2 . 2  |-  B  e.  CC
3 mulneg1 9454 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  B )  =  -u ( A  x.  B
) )
41, 2, 3mp2an 654 1  |-  ( -u A  x.  B )  =  -u ( A  x.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725  (class class class)co 6067   CCcc 8972    x. cmul 8979   -ucneg 9276
This theorem is referenced by:  recgt0ii  9900  crreczi  11487  sinhval  12738  coshval  12739  dvdslelem  12877  divalglem2  12898  divalglem6  12901  gcdaddmlem  13011  ang180lem2  20635  ang180lem3  20636  1cubrlem  20664  asinsinlem  20714  asinsin  20715  asin1  20717  lgsdir2lem5  21094  nvpi  22138  ipasslem10  22323  normlem3  22597  dvreasin  26221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-po 4490  df-so 4491  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-riota 6535  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-pnf 9106  df-mnf 9107  df-ltxr 9109  df-sub 9277  df-neg 9278
  Copyright terms: Public domain W3C validator