MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem1 Unicode version

Theorem mulog2sumlem1 20515
Description: Asymptotic formula for  sum_ n  <_  x ,  log (
x  /  n )  /  n  =  ( 1  /  2 ) log ^ 2 ( x )  +  gamma  x.  log x  -  L  +  O ( log x  /  x ), with explicit constants. Equation 10.2.7 of [Shapiro], p. 407. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
logdivsum.1  |-  F  =  ( y  e.  RR+  |->  ( sum_ i  e.  ( 1 ... ( |_
`  y ) ) ( ( log `  i
)  /  i )  -  ( ( ( log `  y ) ^ 2 )  / 
2 ) ) )
mulog2sumlem.1  |-  ( ph  ->  F  ~~> r  L )
mulog2sumlem1.2  |-  ( ph  ->  A  e.  RR+ )
mulog2sumlem1.3  |-  ( ph  ->  _e  <_  A )
Assertion
Ref Expression
mulog2sumlem1  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  <_  (
2  x.  ( ( log `  A )  /  A ) ) )
Distinct variable groups:    i, m, y, A    ph, m
Allowed substitution hints:    ph( y, i)    F( y, i, m)    L( y, i, m)

Proof of Theorem mulog2sumlem1
StepHypRef Expression
1 fzfid 10913 . . . . . 6  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  e.  Fin )
2 mulog2sumlem1.2 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR+ )
3 elfznn 10697 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  A
) )  ->  m  e.  NN )
43nnrpd 10268 . . . . . . . . 9  |-  ( m  e.  ( 1 ... ( |_ `  A
) )  ->  m  e.  RR+ )
5 rpdivcl 10255 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  ( A  /  m )  e.  RR+ )
62, 4, 5syl2an 465 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  /  m )  e.  RR+ )
76relogcld 19806 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  ( A  /  m
) )  e.  RR )
83adantl 454 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  NN )
97, 8nndivred 9674 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  ( A  /  m ) )  /  m )  e.  RR )
101, 9fsumrecl 12084 . . . . 5  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  e.  RR )
112relogcld 19806 . . . . . . . 8  |-  ( ph  ->  ( log `  A
)  e.  RR )
1211resqcld 11149 . . . . . . 7  |-  ( ph  ->  ( ( log `  A
) ^ 2 )  e.  RR )
1312rehalfcld 9837 . . . . . 6  |-  ( ph  ->  ( ( ( log `  A ) ^ 2 )  /  2 )  e.  RR )
14 emre 20131 . . . . . . . 8  |-  gamma  e.  RR
15 remulcl 8702 . . . . . . . 8  |-  ( (
gamma  e.  RR  /\  ( log `  A )  e.  RR )  ->  ( gamma  x.  ( log `  A
) )  e.  RR )
1614, 11, 15sylancr 647 . . . . . . 7  |-  ( ph  ->  ( gamma  x.  ( log `  A ) )  e.  RR )
17 rpsup 10848 . . . . . . . . 9  |-  sup ( RR+ ,  RR* ,  <  )  =  +oo
1817a1i 12 . . . . . . . 8  |-  ( ph  ->  sup ( RR+ ,  RR* ,  <  )  =  +oo )
19 logdivsum.1 . . . . . . . . . . . . 13  |-  F  =  ( y  e.  RR+  |->  ( sum_ i  e.  ( 1 ... ( |_
`  y ) ) ( ( log `  i
)  /  i )  -  ( ( ( log `  y ) ^ 2 )  / 
2 ) ) )
2019logdivsum 20514 . . . . . . . . . . . 12  |-  ( F : RR+ --> RR  /\  F  e.  dom  ~~> r  /\  (
( F  ~~> r  L  /\  A  e.  RR+  /\  _e  <_  A )  ->  ( abs `  ( ( F `
 A )  -  L ) )  <_ 
( ( log `  A
)  /  A ) ) )
2120simp1i 969 . . . . . . . . . . 11  |-  F : RR+
--> RR
2221a1i 12 . . . . . . . . . 10  |-  ( ph  ->  F : RR+ --> RR )
2322feqmptd 5427 . . . . . . . . 9  |-  ( ph  ->  F  =  ( x  e.  RR+  |->  ( F `
 x ) ) )
24 mulog2sumlem.1 . . . . . . . . 9  |-  ( ph  ->  F  ~~> r  L )
2523, 24eqbrtrrd 3942 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR+  |->  ( F `  x ) )  ~~> r  L )
2621ffvelrni 5516 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( F `
 x )  e.  RR )
2726adantl 454 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  e.  RR )
2818, 25, 27rlimrecl 11931 . . . . . . 7  |-  ( ph  ->  L  e.  RR )
2916, 28resubcld 9091 . . . . . 6  |-  ( ph  ->  ( ( gamma  x.  ( log `  A ) )  -  L )  e.  RR )
3013, 29readdcld 8742 . . . . 5  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) )  e.  RR )
3110, 30resubcld 9091 . . . 4  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) )  e.  RR )
3231recnd 8741 . . 3  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) )  e.  CC )
3332abscld 11795 . 2  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  e.  RR )
34 rerpdivcl 10260 . . . . . . . 8  |-  ( ( ( log `  A
)  e.  RR  /\  m  e.  RR+ )  -> 
( ( log `  A
)  /  m )  e.  RR )
3511, 4, 34syl2an 465 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  A )  /  m )  e.  RR )
3635recnd 8741 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  A )  /  m )  e.  CC )
371, 36fsumcl 12083 . . . . 5  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  e.  CC )
3811recnd 8741 . . . . . 6  |-  ( ph  ->  ( log `  A
)  e.  CC )
39 readdcl 8700 . . . . . . . 8  |-  ( ( ( log `  A
)  e.  RR  /\  gamma  e.  RR )  ->  (
( log `  A
)  +  gamma )  e.  RR )
4011, 14, 39sylancl 646 . . . . . . 7  |-  ( ph  ->  ( ( log `  A
)  +  gamma )  e.  RR )
4140recnd 8741 . . . . . 6  |-  ( ph  ->  ( ( log `  A
)  +  gamma )  e.  CC )
4238, 41mulcld 8735 . . . . 5  |-  ( ph  ->  ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  e.  CC )
4337, 42subcld 9037 . . . 4  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  e.  CC )
4443abscld 11795 . . 3  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  e.  RR )
458nnrpd 10268 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  RR+ )
4645relogcld 19806 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  m )  e.  RR )
4746, 8nndivred 9674 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  m )  /  m )  e.  RR )
4847recnd 8741 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  m )  /  m )  e.  CC )
491, 48fsumcl 12083 . . . . 5  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  e.  CC )
5013recnd 8741 . . . . . 6  |-  ( ph  ->  ( ( ( log `  A ) ^ 2 )  /  2 )  e.  CC )
5128recnd 8741 . . . . . 6  |-  ( ph  ->  L  e.  CC )
5250, 51addcld 8734 . . . . 5  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  L
)  e.  CC )
5349, 52subcld 9037 . . . 4  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) )  e.  CC )
5453abscld 11795 . . 3  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) )  e.  RR )
5544, 54readdcld 8742 . 2  |-  ( ph  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  +  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )  e.  RR )
56 2re 9695 . . 3  |-  2  e.  RR
5711, 2rerpdivcld 10296 . . 3  |-  ( ph  ->  ( ( log `  A
)  /  A )  e.  RR )
58 remulcl 8702 . . 3  |-  ( ( 2  e.  RR  /\  ( ( log `  A
)  /  A )  e.  RR )  -> 
( 2  x.  (
( log `  A
)  /  A ) )  e.  RR )
5956, 57, 58sylancr 647 . 2  |-  ( ph  ->  ( 2  x.  (
( log `  A
)  /  A ) )  e.  RR )
60 relogdiv 19778 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  ( log `  ( A  /  m ) )  =  ( ( log `  A
)  -  ( log `  m ) ) )
612, 4, 60syl2an 465 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  ( A  /  m
) )  =  ( ( log `  A
)  -  ( log `  m ) ) )
6261oveq1d 5725 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  ( A  /  m ) )  /  m )  =  ( ( ( log `  A
)  -  ( log `  m ) )  /  m ) )
6338adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  A )  e.  CC )
6446recnd 8741 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  m )  e.  CC )
6545rpcnne0d 10278 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
66 divsubdir 9336 . . . . . . . . . 10  |-  ( ( ( log `  A
)  e.  CC  /\  ( log `  m )  e.  CC  /\  (
m  e.  CC  /\  m  =/=  0 ) )  ->  ( ( ( log `  A )  -  ( log `  m
) )  /  m
)  =  ( ( ( log `  A
)  /  m )  -  ( ( log `  m )  /  m
) ) )
6763, 64, 65, 66syl3anc 1187 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( log `  A
)  -  ( log `  m ) )  /  m )  =  ( ( ( log `  A
)  /  m )  -  ( ( log `  m )  /  m
) ) )
6862, 67eqtrd 2285 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  ( A  /  m ) )  /  m )  =  ( ( ( log `  A
)  /  m )  -  ( ( log `  m )  /  m
) ) )
6968sumeq2dv 12053 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  = 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( ( log `  A
)  /  m )  -  ( ( log `  m )  /  m
) ) )
701, 36, 48fsumsub 12127 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( ( log `  A
)  /  m )  -  ( ( log `  m )  /  m
) )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) ) )
7169, 70eqtrd 2285 . . . . . 6  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  =  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  /  m )  -  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) ) )
72 remulcl 8702 . . . . . . . . . . . . 13  |-  ( ( ( log `  A
)  e.  RR  /\  gamma  e.  RR )  ->  (
( log `  A
)  x.  gamma )  e.  RR )
7311, 14, 72sylancl 646 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( log `  A
)  x.  gamma )  e.  RR )
7413, 73readdcld 8742 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( log `  A
)  x.  gamma )
)  e.  RR )
7574recnd 8741 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( log `  A
)  x.  gamma )
)  e.  CC )
7675, 50pncand 9038 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( log `  A
)  x.  gamma )
)  +  ( ( ( log `  A
) ^ 2 )  /  2 ) )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) )  =  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( log `  A
)  x.  gamma )
) )
7714recni 8729 . . . . . . . . . . . . 13  |-  gamma  e.  CC
7877a1i 12 . . . . . . . . . . . 12  |-  ( ph  -> 
gamma  e.  CC )
7938, 38, 78adddid 8739 . . . . . . . . . . 11  |-  ( ph  ->  ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  =  ( ( ( log `  A )  x.  ( log `  A ) )  +  ( ( log `  A )  x.  gamma ) ) )
8012recnd 8741 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( log `  A
) ^ 2 )  e.  CC )
81802halvesd 9836 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( ( log `  A
) ^ 2 )  /  2 ) )  =  ( ( log `  A ) ^ 2 ) )
8238sqvald 11120 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( log `  A
) ^ 2 )  =  ( ( log `  A )  x.  ( log `  A ) ) )
8381, 82eqtrd 2285 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( ( log `  A
) ^ 2 )  /  2 ) )  =  ( ( log `  A )  x.  ( log `  A ) ) )
8483oveq1d 5725 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( ( log `  A ) ^ 2 )  /  2 ) )  +  ( ( log `  A )  x.  gamma ) )  =  ( ( ( log `  A )  x.  ( log `  A ) )  +  ( ( log `  A )  x.  gamma ) ) )
8573recnd 8741 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( log `  A
)  x.  gamma )  e.  CC )
8650, 50, 85add32d 8914 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( ( log `  A ) ^ 2 )  /  2 ) )  +  ( ( log `  A )  x.  gamma ) )  =  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( log `  A
)  x.  gamma )
)  +  ( ( ( log `  A
) ^ 2 )  /  2 ) ) )
8779, 84, 863eqtr2d 2291 . . . . . . . . . 10  |-  ( ph  ->  ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  =  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( log `  A
)  x.  gamma )
)  +  ( ( ( log `  A
) ^ 2 )  /  2 ) ) )
8887oveq1d 5725 . . . . . . . . 9  |-  ( ph  ->  ( ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
)  -  ( ( ( log `  A
) ^ 2 )  /  2 ) )  =  ( ( ( ( ( ( log `  A ) ^ 2 )  /  2 )  +  ( ( log `  A )  x.  gamma ) )  +  ( ( ( log `  A
) ^ 2 )  /  2 ) )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) ) )
89 mulcom 8703 . . . . . . . . . . 11  |-  ( (
gamma  e.  CC  /\  ( log `  A )  e.  CC )  ->  ( gamma  x.  ( log `  A
) )  =  ( ( log `  A
)  x.  gamma )
)
9077, 38, 89sylancr 647 . . . . . . . . . 10  |-  ( ph  ->  ( gamma  x.  ( log `  A ) )  =  ( ( log `  A )  x.  gamma ) )
9190oveq2d 5726 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  (
gamma  x.  ( log `  A
) ) )  =  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( log `  A
)  x.  gamma )
) )
9276, 88, 913eqtr4rd 2296 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  (
gamma  x.  ( log `  A
) ) )  =  ( ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
)  -  ( ( ( log `  A
) ^ 2 )  /  2 ) ) )
9392oveq1d 5725 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( gamma  x.  ( log `  A ) ) )  -  L )  =  ( ( ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  -  ( ( ( log `  A ) ^ 2 )  /  2 ) )  -  L ) )
9490, 85eqeltrd 2327 . . . . . . . 8  |-  ( ph  ->  ( gamma  x.  ( log `  A ) )  e.  CC )
9550, 94, 51addsubassd 9057 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( gamma  x.  ( log `  A ) ) )  -  L )  =  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) )
9642, 50, 51subsub4d 9068 . . . . . . 7  |-  ( ph  ->  ( ( ( ( log `  A )  x.  ( ( log `  A )  +  gamma ) )  -  ( ( ( log `  A
) ^ 2 )  /  2 ) )  -  L )  =  ( ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
)  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) )
9793, 95, 963eqtr3d 2293 . . . . . 6  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) )  =  ( ( ( log `  A )  x.  ( ( log `  A )  +  gamma ) )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) )
9871, 97oveq12d 5728 . . . . 5  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) )  =  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) )  -  ( ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  L
) ) ) )
9937, 49, 42, 52sub4d 9086 . . . . 5  |-  ( ph  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) )  -  ( ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  L
) ) )  =  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )
10098, 99eqtrd 2285 . . . 4  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) )  =  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )
101100fveq2d 5381 . . 3  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  =  ( abs `  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) ) )
10243, 53abs2dif2d 11817 . . 3  |-  ( ph  ->  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )  <_  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  +  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) ) )
103101, 102eqbrtrd 3940 . 2  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  <_  (
( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  +  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) ) )
104 harmonicbnd4 20136 . . . . . . 7  |-  ( A  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )  <_  ( 1  /  A ) )
1052, 104syl 17 . . . . . 6  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) )  <_  (
1  /  A ) )
1068nnrecred 9671 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  m )  e.  RR )
1071, 106fsumrecl 12084 . . . . . . . . . 10  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  e.  RR )
108107, 40resubcld 9091 . . . . . . . . 9  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) )  e.  RR )
109108recnd 8741 . . . . . . . 8  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) )  e.  CC )
110109abscld 11795 . . . . . . 7  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) )  e.  RR )
1112rprecred 10280 . . . . . . 7  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
112 0re 8718 . . . . . . . . 9  |-  0  e.  RR
113112a1i 12 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
114 1re 8717 . . . . . . . . 9  |-  1  e.  RR
115114a1i 12 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
116 0lt1 9176 . . . . . . . . 9  |-  0  <  1
117116a1i 12 . . . . . . . 8  |-  ( ph  ->  0  <  1 )
118 loge 19772 . . . . . . . . 9  |-  ( log `  _e )  =  1
119 mulog2sumlem1.3 . . . . . . . . . 10  |-  ( ph  ->  _e  <_  A )
120 epr 12360 . . . . . . . . . . 11  |-  _e  e.  RR+
121 logleb 19789 . . . . . . . . . . 11  |-  ( ( _e  e.  RR+  /\  A  e.  RR+ )  ->  (
_e  <_  A  <->  ( log `  _e )  <_  ( log `  A ) ) )
122120, 2, 121sylancr 647 . . . . . . . . . 10  |-  ( ph  ->  ( _e  <_  A  <->  ( log `  _e )  <_  ( log `  A
) ) )
123119, 122mpbid 203 . . . . . . . . 9  |-  ( ph  ->  ( log `  _e )  <_  ( log `  A
) )
124118, 123syl5eqbrr 3954 . . . . . . . 8  |-  ( ph  ->  1  <_  ( log `  A ) )
125113, 115, 11, 117, 124ltletrd 8856 . . . . . . 7  |-  ( ph  ->  0  <  ( log `  A ) )
126 lemul2 9489 . . . . . . 7  |-  ( ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) )  e.  RR  /\  ( 1  /  A
)  e.  RR  /\  ( ( log `  A
)  e.  RR  /\  0  <  ( log `  A
) ) )  -> 
( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) )  <_  (
1  /  A )  <-> 
( ( log `  A
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) ) )  <_  ( ( log `  A )  x.  ( 1  /  A
) ) ) )
127110, 111, 11, 125, 126syl112anc 1191 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) )  <_  (
1  /  A )  <-> 
( ( log `  A
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) ) )  <_  ( ( log `  A )  x.  ( 1  /  A
) ) ) )
128105, 127mpbid 203 . . . . 5  |-  ( ph  ->  ( ( log `  A
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) ) )  <_  ( ( log `  A )  x.  ( 1  /  A
) ) )
12945rpcnd 10271 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  CC )
13045rpne0d 10274 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  =/=  0 )
13163, 129, 130divrecd 9419 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  A )  /  m )  =  ( ( log `  A
)  x.  ( 1  /  m ) ) )
132131sumeq2dv 12053 . . . . . . . . . 10  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  =  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  x.  ( 1  /  m ) ) )
133106recnd 8741 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  m )  e.  CC )
1341, 38, 133fsummulc2 12123 . . . . . . . . . 10  |-  ( ph  ->  ( ( log `  A
)  x.  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
) )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( ( log `  A )  x.  ( 1  /  m ) ) )
135132, 134eqtr4d 2288 . . . . . . . . 9  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  =  ( ( log `  A )  x.  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) ) )
136135oveq1d 5725 . . . . . . . 8  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  =  ( ( ( log `  A
)  x.  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
) )  -  (
( log `  A
)  x.  ( ( log `  A )  +  gamma ) ) ) )
1371, 133fsumcl 12083 . . . . . . . . 9  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  e.  CC )
13838, 137, 41subdid 9115 . . . . . . . 8  |-  ( ph  ->  ( ( log `  A
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) )  =  ( ( ( log `  A
)  x.  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
) )  -  (
( log `  A
)  x.  ( ( log `  A )  +  gamma ) ) ) )
139136, 138eqtr4d 2288 . . . . . . 7  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  =  ( ( log `  A
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) ) )
140139fveq2d 5381 . . . . . 6  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  =  ( abs `  (
( log `  A
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) ) ) )
141137, 41subcld 9037 . . . . . . 7  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) )  e.  CC )
14238, 141absmuld 11813 . . . . . 6  |-  ( ph  ->  ( abs `  (
( log `  A
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) ) )  =  ( ( abs `  ( log `  A ) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) ) ) )
143113, 11, 125ltled 8847 . . . . . . . 8  |-  ( ph  ->  0  <_  ( log `  A ) )
14411, 143absidd 11782 . . . . . . 7  |-  ( ph  ->  ( abs `  ( log `  A ) )  =  ( log `  A
) )
145144oveq1d 5725 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( log `  A ) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) ) )  =  ( ( log `  A
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) ) ) )
146140, 142, 1453eqtrd 2289 . . . . 5  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  =  ( ( log `  A
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) ) ) )
1472rpcnd 10271 . . . . . 6  |-  ( ph  ->  A  e.  CC )
1482rpne0d 10274 . . . . . 6  |-  ( ph  ->  A  =/=  0 )
14938, 147, 148divrecd 9419 . . . . 5  |-  ( ph  ->  ( ( log `  A
)  /  A )  =  ( ( log `  A )  x.  (
1  /  A ) ) )
150128, 146, 1493brtr4d 3950 . . . 4  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  <_ 
( ( log `  A
)  /  A ) )
151 fveq2 5377 . . . . . . . . . . . . . 14  |-  ( i  =  m  ->  ( log `  i )  =  ( log `  m
) )
152 id 21 . . . . . . . . . . . . . 14  |-  ( i  =  m  ->  i  =  m )
153151, 152oveq12d 5728 . . . . . . . . . . . . 13  |-  ( i  =  m  ->  (
( log `  i
)  /  i )  =  ( ( log `  m )  /  m
) )
154153cbvsumv 12046 . . . . . . . . . . . 12  |-  sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( ( log `  i
)  /  i )  =  sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( ( log `  m
)  /  m )
155 fveq2 5377 . . . . . . . . . . . . . 14  |-  ( y  =  A  ->  ( |_ `  y )  =  ( |_ `  A
) )
156155oveq2d 5726 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
1 ... ( |_ `  y ) )  =  ( 1 ... ( |_ `  A ) ) )
157156sumeq1d 12051 . . . . . . . . . . . 12  |-  ( y  =  A  ->  sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( ( log `  m
)  /  m )  =  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) )
158154, 157syl5eq 2297 . . . . . . . . . . 11  |-  ( y  =  A  ->  sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( ( log `  i
)  /  i )  =  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) )
159 fveq2 5377 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  ( log `  y )  =  ( log `  A
) )
160159oveq1d 5725 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
( log `  y
) ^ 2 )  =  ( ( log `  A ) ^ 2 ) )
161160oveq1d 5725 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( ( log `  y
) ^ 2 )  /  2 )  =  ( ( ( log `  A ) ^ 2 )  /  2 ) )
162158, 161oveq12d 5728 . . . . . . . . . 10  |-  ( y  =  A  ->  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( ( log `  i
)  /  i )  -  ( ( ( log `  y ) ^ 2 )  / 
2 ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) ) )
163 ovex 5735 . . . . . . . . . 10  |-  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( ( log `  m )  /  m )  -  ( ( ( log `  A ) ^ 2 )  /  2 ) )  e.  _V
164162, 19, 163fvmpt 5454 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( F `
 A )  =  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) ) )
1652, 164syl 17 . . . . . . . 8  |-  ( ph  ->  ( F `  A
)  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( ( log `  m )  /  m )  -  ( ( ( log `  A ) ^ 2 )  /  2 ) ) )
166165oveq1d 5725 . . . . . . 7  |-  ( ph  ->  ( ( F `  A )  -  L
)  =  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) )  -  L ) )
16749, 50, 51subsub4d 9068 . . . . . . 7  |-  ( ph  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) )  -  L )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) )
168166, 167eqtrd 2285 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  -  L
)  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( ( log `  m )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  L
) ) )
169168fveq2d 5381 . . . . 5  |-  ( ph  ->  ( abs `  (
( F `  A
)  -  L ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )
17020simp3i 971 . . . . . 6  |-  ( ( F  ~~> r  L  /\  A  e.  RR+  /\  _e  <_  A )  ->  ( abs `  ( ( F `
 A )  -  L ) )  <_ 
( ( log `  A
)  /  A ) )
17124, 2, 119, 170syl3anc 1187 . . . . 5  |-  ( ph  ->  ( abs `  (
( F `  A
)  -  L ) )  <_  ( ( log `  A )  /  A ) )
172169, 171eqbrtrrd 3942 . . . 4  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) )  <_  ( ( log `  A )  /  A
) )
17344, 54, 57, 57, 150, 172le2addd 9270 . . 3  |-  ( ph  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  +  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )  <_  ( (
( log `  A
)  /  A )  +  ( ( log `  A )  /  A
) ) )
17457recnd 8741 . . . 4  |-  ( ph  ->  ( ( log `  A
)  /  A )  e.  CC )
1751742timesd 9833 . . 3  |-  ( ph  ->  ( 2  x.  (
( log `  A
)  /  A ) )  =  ( ( ( log `  A
)  /  A )  +  ( ( log `  A )  /  A
) ) )
176173, 175breqtrrd 3946 . 2  |-  ( ph  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  +  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )  <_  ( 2  x.  ( ( log `  A )  /  A
) ) )
17733, 55, 59, 103, 176letrd 8853 1  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  <_  (
2  x.  ( ( log `  A )  /  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920    e. cmpt 3974   dom cdm 4580   -->wf 4588   ` cfv 4592  (class class class)co 5710   supcsup 7077   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    +oocpnf 8744   RR*cxr 8746    < clt 8747    <_ cle 8748    - cmin 8917    / cdiv 9303   NNcn 9626   2c2 9675   RR+crp 10233   ...cfz 10660   |_cfl 10802   ^cexp 10982   abscabs 11596    ~~> r crli 11836   sum_csu 12035   _eceu 12218   logclog 19744   gammacem 20118
This theorem is referenced by:  mulog2sumlem2  20516
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-sum 12036  df-ef 12223  df-e 12224  df-sin 12225  df-cos 12226  df-pi 12228  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-cxp 19747  df-em 20119
  Copyright terms: Public domain W3C validator