MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem1 Unicode version

Theorem mulog2sumlem1 20677
Description: Asymptotic formula for  sum_ n  <_  x ,  log (
x  /  n )  /  n  =  ( 1  /  2 ) log ^ 2 ( x )  +  gamma  x.  log x  -  L  +  O ( log x  /  x ), with explicit constants. Equation 10.2.7 of [Shapiro], p. 407. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
logdivsum.1  |-  F  =  ( y  e.  RR+  |->  ( sum_ i  e.  ( 1 ... ( |_
`  y ) ) ( ( log `  i
)  /  i )  -  ( ( ( log `  y ) ^ 2 )  / 
2 ) ) )
mulog2sumlem.1  |-  ( ph  ->  F  ~~> r  L )
mulog2sumlem1.2  |-  ( ph  ->  A  e.  RR+ )
mulog2sumlem1.3  |-  ( ph  ->  _e  <_  A )
Assertion
Ref Expression
mulog2sumlem1  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  <_  (
2  x.  ( ( log `  A )  /  A ) ) )
Distinct variable groups:    i, m, y, A    ph, m
Allowed substitution hints:    ph( y, i)    F( y, i, m)    L( y, i, m)

Proof of Theorem mulog2sumlem1
StepHypRef Expression
1 fzfid 11029 . . . . . 6  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  e.  Fin )
2 mulog2sumlem1.2 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR+ )
3 elfznn 10813 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  A
) )  ->  m  e.  NN )
43nnrpd 10384 . . . . . . . . 9  |-  ( m  e.  ( 1 ... ( |_ `  A
) )  ->  m  e.  RR+ )
5 rpdivcl 10371 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  ( A  /  m )  e.  RR+ )
62, 4, 5syl2an 465 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  /  m )  e.  RR+ )
76relogcld 19968 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  ( A  /  m
) )  e.  RR )
83adantl 454 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  NN )
97, 8nndivred 9789 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  ( A  /  m ) )  /  m )  e.  RR )
101, 9fsumrecl 12201 . . . . 5  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  e.  RR )
112relogcld 19968 . . . . . . . 8  |-  ( ph  ->  ( log `  A
)  e.  RR )
1211resqcld 11265 . . . . . . 7  |-  ( ph  ->  ( ( log `  A
) ^ 2 )  e.  RR )
1312rehalfcld 9953 . . . . . 6  |-  ( ph  ->  ( ( ( log `  A ) ^ 2 )  /  2 )  e.  RR )
14 emre 20293 . . . . . . . 8  |-  gamma  e.  RR
15 remulcl 8817 . . . . . . . 8  |-  ( (
gamma  e.  RR  /\  ( log `  A )  e.  RR )  ->  ( gamma  x.  ( log `  A
) )  e.  RR )
1614, 11, 15sylancr 647 . . . . . . 7  |-  ( ph  ->  ( gamma  x.  ( log `  A ) )  e.  RR )
17 rpsup 10964 . . . . . . . . 9  |-  sup ( RR+ ,  RR* ,  <  )  =  +oo
1817a1i 12 . . . . . . . 8  |-  ( ph  ->  sup ( RR+ ,  RR* ,  <  )  =  +oo )
19 logdivsum.1 . . . . . . . . . . . . 13  |-  F  =  ( y  e.  RR+  |->  ( sum_ i  e.  ( 1 ... ( |_
`  y ) ) ( ( log `  i
)  /  i )  -  ( ( ( log `  y ) ^ 2 )  / 
2 ) ) )
2019logdivsum 20676 . . . . . . . . . . . 12  |-  ( F : RR+ --> RR  /\  F  e.  dom  ~~> r  /\  (
( F  ~~> r  L  /\  A  e.  RR+  /\  _e  <_  A )  ->  ( abs `  ( ( F `
 A )  -  L ) )  <_ 
( ( log `  A
)  /  A ) ) )
2120simp1i 969 . . . . . . . . . . 11  |-  F : RR+
--> RR
2221a1i 12 . . . . . . . . . 10  |-  ( ph  ->  F : RR+ --> RR )
2322feqmptd 5536 . . . . . . . . 9  |-  ( ph  ->  F  =  ( x  e.  RR+  |->  ( F `
 x ) ) )
24 mulog2sumlem.1 . . . . . . . . 9  |-  ( ph  ->  F  ~~> r  L )
2523, 24eqbrtrrd 4046 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR+  |->  ( F `  x ) )  ~~> r  L )
2621ffvelrni 5625 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( F `
 x )  e.  RR )
2726adantl 454 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  e.  RR )
2818, 25, 27rlimrecl 12048 . . . . . . 7  |-  ( ph  ->  L  e.  RR )
2916, 28resubcld 9206 . . . . . 6  |-  ( ph  ->  ( ( gamma  x.  ( log `  A ) )  -  L )  e.  RR )
3013, 29readdcld 8857 . . . . 5  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) )  e.  RR )
3110, 30resubcld 9206 . . . 4  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) )  e.  RR )
3231recnd 8856 . . 3  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) )  e.  CC )
3332abscld 11912 . 2  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  e.  RR )
34 rerpdivcl 10376 . . . . . . . 8  |-  ( ( ( log `  A
)  e.  RR  /\  m  e.  RR+ )  -> 
( ( log `  A
)  /  m )  e.  RR )
3511, 4, 34syl2an 465 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  A )  /  m )  e.  RR )
3635recnd 8856 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  A )  /  m )  e.  CC )
371, 36fsumcl 12200 . . . . 5  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  e.  CC )
3811recnd 8856 . . . . . 6  |-  ( ph  ->  ( log `  A
)  e.  CC )
39 readdcl 8815 . . . . . . . 8  |-  ( ( ( log `  A
)  e.  RR  /\  gamma  e.  RR )  ->  (
( log `  A
)  +  gamma )  e.  RR )
4011, 14, 39sylancl 646 . . . . . . 7  |-  ( ph  ->  ( ( log `  A
)  +  gamma )  e.  RR )
4140recnd 8856 . . . . . 6  |-  ( ph  ->  ( ( log `  A
)  +  gamma )  e.  CC )
4238, 41mulcld 8850 . . . . 5  |-  ( ph  ->  ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  e.  CC )
4337, 42subcld 9152 . . . 4  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  e.  CC )
4443abscld 11912 . . 3  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  e.  RR )
458nnrpd 10384 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  RR+ )
4645relogcld 19968 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  m )  e.  RR )
4746, 8nndivred 9789 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  m )  /  m )  e.  RR )
4847recnd 8856 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  m )  /  m )  e.  CC )
491, 48fsumcl 12200 . . . . 5  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  e.  CC )
5013recnd 8856 . . . . . 6  |-  ( ph  ->  ( ( ( log `  A ) ^ 2 )  /  2 )  e.  CC )
5128recnd 8856 . . . . . 6  |-  ( ph  ->  L  e.  CC )
5250, 51addcld 8849 . . . . 5  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  L
)  e.  CC )
5349, 52subcld 9152 . . . 4  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) )  e.  CC )
5453abscld 11912 . . 3  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) )  e.  RR )
5544, 54readdcld 8857 . 2  |-  ( ph  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  +  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )  e.  RR )
56 2re 9810 . . 3  |-  2  e.  RR
5711, 2rerpdivcld 10412 . . 3  |-  ( ph  ->  ( ( log `  A
)  /  A )  e.  RR )
58 remulcl 8817 . . 3  |-  ( ( 2  e.  RR  /\  ( ( log `  A
)  /  A )  e.  RR )  -> 
( 2  x.  (
( log `  A
)  /  A ) )  e.  RR )
5956, 57, 58sylancr 647 . 2  |-  ( ph  ->  ( 2  x.  (
( log `  A
)  /  A ) )  e.  RR )
60 relogdiv 19940 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  ( log `  ( A  /  m ) )  =  ( ( log `  A
)  -  ( log `  m ) ) )
612, 4, 60syl2an 465 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  ( A  /  m
) )  =  ( ( log `  A
)  -  ( log `  m ) ) )
6261oveq1d 5834 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  ( A  /  m ) )  /  m )  =  ( ( ( log `  A
)  -  ( log `  m ) )  /  m ) )
6338adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  A )  e.  CC )
6446recnd 8856 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  m )  e.  CC )
6545rpcnne0d 10394 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
66 divsubdir 9451 . . . . . . . . . 10  |-  ( ( ( log `  A
)  e.  CC  /\  ( log `  m )  e.  CC  /\  (
m  e.  CC  /\  m  =/=  0 ) )  ->  ( ( ( log `  A )  -  ( log `  m
) )  /  m
)  =  ( ( ( log `  A
)  /  m )  -  ( ( log `  m )  /  m
) ) )
6763, 64, 65, 66syl3anc 1187 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( log `  A
)  -  ( log `  m ) )  /  m )  =  ( ( ( log `  A
)  /  m )  -  ( ( log `  m )  /  m
) ) )
6862, 67eqtrd 2316 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  ( A  /  m ) )  /  m )  =  ( ( ( log `  A
)  /  m )  -  ( ( log `  m )  /  m
) ) )
6968sumeq2dv 12170 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  = 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( ( log `  A
)  /  m )  -  ( ( log `  m )  /  m
) ) )
701, 36, 48fsumsub 12244 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( ( log `  A
)  /  m )  -  ( ( log `  m )  /  m
) )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) ) )
7169, 70eqtrd 2316 . . . . . 6  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  =  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  /  m )  -  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) ) )
72 remulcl 8817 . . . . . . . . . . . . 13  |-  ( ( ( log `  A
)  e.  RR  /\  gamma  e.  RR )  ->  (
( log `  A
)  x.  gamma )  e.  RR )
7311, 14, 72sylancl 646 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( log `  A
)  x.  gamma )  e.  RR )
7413, 73readdcld 8857 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( log `  A
)  x.  gamma )
)  e.  RR )
7574recnd 8856 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( log `  A
)  x.  gamma )
)  e.  CC )
7675, 50pncand 9153 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( log `  A
)  x.  gamma )
)  +  ( ( ( log `  A
) ^ 2 )  /  2 ) )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) )  =  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( log `  A
)  x.  gamma )
) )
7714recni 8844 . . . . . . . . . . . . 13  |-  gamma  e.  CC
7877a1i 12 . . . . . . . . . . . 12  |-  ( ph  -> 
gamma  e.  CC )
7938, 38, 78adddid 8854 . . . . . . . . . . 11  |-  ( ph  ->  ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  =  ( ( ( log `  A )  x.  ( log `  A ) )  +  ( ( log `  A )  x.  gamma ) ) )
8012recnd 8856 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( log `  A
) ^ 2 )  e.  CC )
81802halvesd 9952 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( ( log `  A
) ^ 2 )  /  2 ) )  =  ( ( log `  A ) ^ 2 ) )
8238sqvald 11236 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( log `  A
) ^ 2 )  =  ( ( log `  A )  x.  ( log `  A ) ) )
8381, 82eqtrd 2316 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( ( log `  A
) ^ 2 )  /  2 ) )  =  ( ( log `  A )  x.  ( log `  A ) ) )
8483oveq1d 5834 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( ( log `  A ) ^ 2 )  /  2 ) )  +  ( ( log `  A )  x.  gamma ) )  =  ( ( ( log `  A )  x.  ( log `  A ) )  +  ( ( log `  A )  x.  gamma ) ) )
8573recnd 8856 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( log `  A
)  x.  gamma )  e.  CC )
8650, 50, 85add32d 9029 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( ( log `  A ) ^ 2 )  /  2 ) )  +  ( ( log `  A )  x.  gamma ) )  =  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( log `  A
)  x.  gamma )
)  +  ( ( ( log `  A
) ^ 2 )  /  2 ) ) )
8779, 84, 863eqtr2d 2322 . . . . . . . . . 10  |-  ( ph  ->  ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  =  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( log `  A
)  x.  gamma )
)  +  ( ( ( log `  A
) ^ 2 )  /  2 ) ) )
8887oveq1d 5834 . . . . . . . . 9  |-  ( ph  ->  ( ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
)  -  ( ( ( log `  A
) ^ 2 )  /  2 ) )  =  ( ( ( ( ( ( log `  A ) ^ 2 )  /  2 )  +  ( ( log `  A )  x.  gamma ) )  +  ( ( ( log `  A
) ^ 2 )  /  2 ) )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) ) )
89 mulcom 8818 . . . . . . . . . . 11  |-  ( (
gamma  e.  CC  /\  ( log `  A )  e.  CC )  ->  ( gamma  x.  ( log `  A
) )  =  ( ( log `  A
)  x.  gamma )
)
9077, 38, 89sylancr 647 . . . . . . . . . 10  |-  ( ph  ->  ( gamma  x.  ( log `  A ) )  =  ( ( log `  A )  x.  gamma ) )
9190oveq2d 5835 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  (
gamma  x.  ( log `  A
) ) )  =  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( log `  A
)  x.  gamma )
) )
9276, 88, 913eqtr4rd 2327 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  (
gamma  x.  ( log `  A
) ) )  =  ( ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
)  -  ( ( ( log `  A
) ^ 2 )  /  2 ) ) )
9392oveq1d 5834 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( gamma  x.  ( log `  A ) ) )  -  L )  =  ( ( ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  -  ( ( ( log `  A ) ^ 2 )  /  2 ) )  -  L ) )
9490, 85eqeltrd 2358 . . . . . . . 8  |-  ( ph  ->  ( gamma  x.  ( log `  A ) )  e.  CC )
9550, 94, 51addsubassd 9172 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( gamma  x.  ( log `  A ) ) )  -  L )  =  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) )
9642, 50, 51subsub4d 9183 . . . . . . 7  |-  ( ph  ->  ( ( ( ( log `  A )  x.  ( ( log `  A )  +  gamma ) )  -  ( ( ( log `  A
) ^ 2 )  /  2 ) )  -  L )  =  ( ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
)  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) )
9793, 95, 963eqtr3d 2324 . . . . . 6  |-  ( ph  ->  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) )  =  ( ( ( log `  A )  x.  ( ( log `  A )  +  gamma ) )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) )
9871, 97oveq12d 5837 . . . . 5  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) )  =  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) )  -  ( ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  L
) ) ) )
9937, 49, 42, 52sub4d 9201 . . . . 5  |-  ( ph  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) )  -  ( ( ( log `  A
)  x.  ( ( log `  A )  +  gamma ) )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  L
) ) )  =  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )
10098, 99eqtrd 2316 . . . 4  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) )  =  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )
101100fveq2d 5489 . . 3  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  =  ( abs `  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) ) )
10243, 53abs2dif2d 11934 . . 3  |-  ( ph  ->  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )  <_  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  +  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) ) )
103101, 102eqbrtrd 4044 . 2  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  <_  (
( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  +  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) ) )
104 harmonicbnd4 20298 . . . . . . 7  |-  ( A  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) )  <_  ( 1  /  A ) )
1052, 104syl 17 . . . . . 6  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) )  <_  (
1  /  A ) )
1068nnrecred 9786 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  m )  e.  RR )
1071, 106fsumrecl 12201 . . . . . . . . . 10  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  e.  RR )
108107, 40resubcld 9206 . . . . . . . . 9  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) )  e.  RR )
109108recnd 8856 . . . . . . . 8  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) )  e.  CC )
110109abscld 11912 . . . . . . 7  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) )  e.  RR )
1112rprecred 10396 . . . . . . 7  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
112 0re 8833 . . . . . . . . 9  |-  0  e.  RR
113112a1i 12 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
114 1re 8832 . . . . . . . . 9  |-  1  e.  RR
115114a1i 12 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
116 0lt1 9291 . . . . . . . . 9  |-  0  <  1
117116a1i 12 . . . . . . . 8  |-  ( ph  ->  0  <  1 )
118 loge 19934 . . . . . . . . 9  |-  ( log `  _e )  =  1
119 mulog2sumlem1.3 . . . . . . . . . 10  |-  ( ph  ->  _e  <_  A )
120 epr 12480 . . . . . . . . . . 11  |-  _e  e.  RR+
121 logleb 19951 . . . . . . . . . . 11  |-  ( ( _e  e.  RR+  /\  A  e.  RR+ )  ->  (
_e  <_  A  <->  ( log `  _e )  <_  ( log `  A ) ) )
122120, 2, 121sylancr 647 . . . . . . . . . 10  |-  ( ph  ->  ( _e  <_  A  <->  ( log `  _e )  <_  ( log `  A
) ) )
123119, 122mpbid 203 . . . . . . . . 9  |-  ( ph  ->  ( log `  _e )  <_  ( log `  A
) )
124118, 123syl5eqbrr 4058 . . . . . . . 8  |-  ( ph  ->  1  <_  ( log `  A ) )
125113, 115, 11, 117, 124ltletrd 8971 . . . . . . 7  |-  ( ph  ->  0  <  ( log `  A ) )
126 lemul2 9604 . . . . . . 7  |-  ( ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) )  e.  RR  /\  ( 1  /  A
)  e.  RR  /\  ( ( log `  A
)  e.  RR  /\  0  <  ( log `  A
) ) )  -> 
( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) )  <_  (
1  /  A )  <-> 
( ( log `  A
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) ) )  <_  ( ( log `  A )  x.  ( 1  /  A
) ) ) )
127110, 111, 11, 125, 126syl112anc 1191 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) )  <_  (
1  /  A )  <-> 
( ( log `  A
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) ) )  <_  ( ( log `  A )  x.  ( 1  /  A
) ) ) )
128105, 127mpbid 203 . . . . 5  |-  ( ph  ->  ( ( log `  A
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) ) )  <_  ( ( log `  A )  x.  ( 1  /  A
) ) )
12945rpcnd 10387 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  CC )
13045rpne0d 10390 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  =/=  0 )
13163, 129, 130divrecd 9534 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( log `  A )  /  m )  =  ( ( log `  A
)  x.  ( 1  /  m ) ) )
132131sumeq2dv 12170 . . . . . . . . . 10  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  =  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  x.  ( 1  /  m ) ) )
133106recnd 8856 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  m )  e.  CC )
1341, 38, 133fsummulc2 12240 . . . . . . . . . 10  |-  ( ph  ->  ( ( log `  A
)  x.  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
) )  =  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( ( log `  A )  x.  ( 1  /  m ) ) )
135132, 134eqtr4d 2319 . . . . . . . . 9  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  =  ( ( log `  A )  x.  sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m ) ) )
136135oveq1d 5834 . . . . . . . 8  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  =  ( ( ( log `  A
)  x.  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
) )  -  (
( log `  A
)  x.  ( ( log `  A )  +  gamma ) ) ) )
1371, 133fsumcl 12200 . . . . . . . . 9  |-  ( ph  -> 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( 1  /  m )  e.  CC )
13838, 137, 41subdid 9230 . . . . . . . 8  |-  ( ph  ->  ( ( log `  A
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) )  =  ( ( ( log `  A
)  x.  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m
) )  -  (
( log `  A
)  x.  ( ( log `  A )  +  gamma ) ) ) )
139136, 138eqtr4d 2319 . . . . . . 7  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) )  =  ( ( log `  A
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) ) )
140139fveq2d 5489 . . . . . 6  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  =  ( abs `  (
( log `  A
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) ) ) )
141137, 41subcld 9152 . . . . . . 7  |-  ( ph  ->  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) )  e.  CC )
14238, 141absmuld 11930 . . . . . 6  |-  ( ph  ->  ( abs `  (
( log `  A
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  m )  -  ( ( log `  A
)  +  gamma )
) ) )  =  ( ( abs `  ( log `  A ) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) ) ) )
143113, 11, 125ltled 8962 . . . . . . . 8  |-  ( ph  ->  0  <_  ( log `  A ) )
14411, 143absidd 11899 . . . . . . 7  |-  ( ph  ->  ( abs `  ( log `  A ) )  =  ( log `  A
) )
145144oveq1d 5834 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( log `  A ) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  m )  -  ( ( log `  A )  +  gamma ) ) ) )  =  ( ( log `  A
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) ) ) )
146140, 142, 1453eqtrd 2320 . . . . 5  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  =  ( ( log `  A
)  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  m
)  -  ( ( log `  A )  +  gamma ) ) ) ) )
1472rpcnd 10387 . . . . . 6  |-  ( ph  ->  A  e.  CC )
1482rpne0d 10390 . . . . . 6  |-  ( ph  ->  A  =/=  0 )
14938, 147, 148divrecd 9534 . . . . 5  |-  ( ph  ->  ( ( log `  A
)  /  A )  =  ( ( log `  A )  x.  (
1  /  A ) ) )
150128, 146, 1493brtr4d 4054 . . . 4  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  <_ 
( ( log `  A
)  /  A ) )
151 fveq2 5485 . . . . . . . . . . . . . 14  |-  ( i  =  m  ->  ( log `  i )  =  ( log `  m
) )
152 id 21 . . . . . . . . . . . . . 14  |-  ( i  =  m  ->  i  =  m )
153151, 152oveq12d 5837 . . . . . . . . . . . . 13  |-  ( i  =  m  ->  (
( log `  i
)  /  i )  =  ( ( log `  m )  /  m
) )
154153cbvsumv 12163 . . . . . . . . . . . 12  |-  sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( ( log `  i
)  /  i )  =  sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( ( log `  m
)  /  m )
155 fveq2 5485 . . . . . . . . . . . . . 14  |-  ( y  =  A  ->  ( |_ `  y )  =  ( |_ `  A
) )
156155oveq2d 5835 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
1 ... ( |_ `  y ) )  =  ( 1 ... ( |_ `  A ) ) )
157156sumeq1d 12168 . . . . . . . . . . . 12  |-  ( y  =  A  ->  sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( ( log `  m
)  /  m )  =  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) )
158154, 157syl5eq 2328 . . . . . . . . . . 11  |-  ( y  =  A  ->  sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( ( log `  i
)  /  i )  =  sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m ) )
159 fveq2 5485 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  ( log `  y )  =  ( log `  A
) )
160159oveq1d 5834 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
( log `  y
) ^ 2 )  =  ( ( log `  A ) ^ 2 ) )
161160oveq1d 5834 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( ( log `  y
) ^ 2 )  /  2 )  =  ( ( ( log `  A ) ^ 2 )  /  2 ) )
162158, 161oveq12d 5837 . . . . . . . . . 10  |-  ( y  =  A  ->  ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( ( log `  i
)  /  i )  -  ( ( ( log `  y ) ^ 2 )  / 
2 ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) ) )
163 ovex 5844 . . . . . . . . . 10  |-  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( ( log `  m )  /  m )  -  ( ( ( log `  A ) ^ 2 )  /  2 ) )  e.  _V
164162, 19, 163fvmpt 5563 . . . . . . . . 9  |-  ( A  e.  RR+  ->  ( F `
 A )  =  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) ) )
1652, 164syl 17 . . . . . . . 8  |-  ( ph  ->  ( F `  A
)  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( ( log `  m )  /  m )  -  ( ( ( log `  A ) ^ 2 )  /  2 ) ) )
166165oveq1d 5834 . . . . . . 7  |-  ( ph  ->  ( ( F `  A )  -  L
)  =  ( (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) )  -  L ) )
16749, 50, 51subsub4d 9183 . . . . . . 7  |-  ( ph  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( log `  A ) ^ 2 )  / 
2 ) )  -  L )  =  (
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) )
168166, 167eqtrd 2316 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  -  L
)  =  ( sum_ m  e.  ( 1 ... ( |_ `  A
) ) ( ( log `  m )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  L
) ) )
169168fveq2d 5489 . . . . 5  |-  ( ph  ->  ( abs `  (
( F `  A
)  -  L ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )
17020simp3i 971 . . . . . 6  |-  ( ( F  ~~> r  L  /\  A  e.  RR+  /\  _e  <_  A )  ->  ( abs `  ( ( F `
 A )  -  L ) )  <_ 
( ( log `  A
)  /  A ) )
17124, 2, 119, 170syl3anc 1187 . . . . 5  |-  ( ph  ->  ( abs `  (
( F `  A
)  -  L ) )  <_  ( ( log `  A )  /  A ) )
172169, 171eqbrtrrd 4046 . . . 4  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) )  <_  ( ( log `  A )  /  A
) )
17344, 54, 57, 57, 150, 172le2addd 9385 . . 3  |-  ( ph  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  +  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )  <_  ( (
( log `  A
)  /  A )  +  ( ( log `  A )  /  A
) ) )
17457recnd 8856 . . . 4  |-  ( ph  ->  ( ( log `  A
)  /  A )  e.  CC )
1751742timesd 9949 . . 3  |-  ( ph  ->  ( 2  x.  (
( log `  A
)  /  A ) )  =  ( ( ( log `  A
)  /  A )  +  ( ( log `  A )  /  A
) ) )
176173, 175breqtrrd 4050 . 2  |-  ( ph  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  A
)  /  m )  -  ( ( log `  A )  x.  (
( log `  A
)  +  gamma )
) ) )  +  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  m
)  /  m )  -  ( ( ( ( log `  A
) ^ 2 )  /  2 )  +  L ) ) ) )  <_  ( 2  x.  ( ( log `  A )  /  A
) ) )
17733, 55, 59, 103, 176letrd 8968 1  |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) )  /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
2 )  +  ( ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  <_  (
2  x.  ( ( log `  A )  /  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1628    e. wcel 1688    =/= wne 2447   class class class wbr 4024    e. cmpt 4078   dom cdm 4688   -->wf 5217   ` cfv 5221  (class class class)co 5819   supcsup 7188   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    +oocpnf 8859   RR*cxr 8861    < clt 8862    <_ cle 8863    - cmin 9032    / cdiv 9418   NNcn 9741   2c2 9790   RR+crp 10349   ...cfz 10776   |_cfl 10918   ^cexp 11098   abscabs 11713    ~~> r crli 11953   sum_csu 12152   _eceu 12338   logclog 19906   gammacem 20280
This theorem is referenced by:  mulog2sumlem2  20678
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-sum 12153  df-ef 12343  df-e 12344  df-sin 12345  df-cos 12346  df-pi 12348  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-cmp 17108  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211  df-log 19908  df-cxp 19909  df-em 20281
  Copyright terms: Public domain W3C validator