MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulogsum Unicode version

Theorem mulogsum 20643
Description: Asymptotic formula for  sum_ n  <_  x ,  ( mmu ( n )  /  n ) log (
x  /  n )  =  O ( 1 ). Equation 10.2.6 of [Shapiro], p. 406. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mulogsum  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 )
Distinct variable group:    x, n

Proof of Theorem mulogsum
StepHypRef Expression
1 rpssre 10331 . . . 4  |-  RR+  C_  RR
2 ax-1cn 8763 . . . 4  |-  1  e.  CC
3 o1const 12058 . . . 4  |-  ( (
RR+  C_  RR  /\  1  e.  CC )  ->  (
x  e.  RR+  |->  1 )  e.  O ( 1 ) )
41, 2, 3mp2an 656 . . 3  |-  ( x  e.  RR+  |->  1 )  e.  O ( 1 )
52a1i 12 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  1  e.  CC )
6 fzfid 11001 . . . . . 6  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
7 elfznn 10785 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
87adantl 454 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
9 mucl 20341 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
108, 9syl 17 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
1110zred 10084 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
1211, 8nndivred 9762 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
137nnrpd 10356 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
14 rpdivcl 10343 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
1513, 14sylan2 462 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
1615relogcld 19936 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
1712, 16remulcld 8831 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  RR )
1817recnd 8829 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
196, 18fsumcl 12171 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e.  CC )
2019adantl 454 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e.  CC )
21 mulogsumlem 20642 . . . . 5  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O ( 1 )
22 sumex 12125 . . . . . . . 8  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  _V
2322a1i 12 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  _V )
2421a1i 12 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O ( 1 ) )
2523, 24o1mptrcl 12061 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  CC )
265, 20subcld 9125 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 1  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  CC )
27 1re 8805 . . . . . . 7  |-  1  e.  RR
2827a1i 12 . . . . . 6  |-  (  T. 
->  1  e.  RR )
29 elfznn 10785 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
3029ssriv 3159 . . . . . . . . . . . . . . . 16  |-  ( 1 ... ( |_ `  x ) )  C_  NN
3130a1i 12 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  C_  NN )
3231sselda 3155 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
3332, 9syl 17 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
3433zred 10084 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
3534, 32nndivred 9762 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  RR )
3635recnd 8829 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  CC )
37 fzfid 11001 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  n ) ) )  e.  Fin )
38 elfznn 10785 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
3938adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  NN )
4039nnrpd 10356 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  RR+ )
4140rpcnne0d 10366 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
42 reccl 9399 . . . . . . . . . . . 12  |-  ( ( m  e.  CC  /\  m  =/=  0 )  -> 
( 1  /  m
)  e.  CC )
4341, 42syl 17 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  CC )
4437, 43fsumcl 12171 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  e.  CC )
45 simpl 445 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR+ )
4645, 13, 14syl2an 465 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
4746relogcld 19936 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( log `  (
x  /  n ) )  e.  RR )
4847recnd 8829 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( log `  (
x  /  n ) )  e.  CC )
4936, 44, 48subdid 9203 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  =  ( ( ( ( mmu `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
5049sumeq2dv 12141 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
51 fzfid 11001 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
5236, 44mulcld 8823 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  e.  CC )
5318adantlr 698 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
5451, 52, 53fsumsub 12215 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
55 oveq2 5800 . . . . . . . . . . . 12  |-  ( k  =  ( n  x.  m )  ->  (
1  /  k )  =  ( 1  / 
( n  x.  m
) ) )
5655oveq2d 5808 . . . . . . . . . . 11  |-  ( k  =  ( n  x.  m )  ->  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) ) )
57 rpre 10327 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
5857adantr 453 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR )
59 ssrab2 3233 . . . . . . . . . . . . . . 15  |-  { y  e.  NN  |  y 
||  k }  C_  NN
60 simprr 736 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
6159, 60sseldi 3153 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  NN )
6261, 9syl 17 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  ZZ )
6362zcnd 10085 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  CC )
6429adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
6564nnrecred 9759 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1  / 
k )  e.  RR )
6665recnd 8829 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1  / 
k )  e.  CC )
6766adantrr 700 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
1  /  k )  e.  CC )
6863, 67mulcld 8823 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
( mmu `  n
)  x.  ( 1  /  k ) )  e.  CC )
6956, 58, 68dvdsflsumcom 20390 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( 1  /  ( n  x.  m ) ) ) )
70 oveq2 5800 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
1  /  k )  =  ( 1  / 
1 ) )
712div1i 9456 . . . . . . . . . . . 12  |-  ( 1  /  1 )  =  1
7270, 71syl6eq 2306 . . . . . . . . . . 11  |-  ( k  =  1  ->  (
1  /  k )  =  1 )
73 flge1nn 10915 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
7457, 73sylan 459 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  NN )
75 nnuz 10230 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
7674, 75syl6eleq 2348 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
77 eluzfz1 10769 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
7876, 77syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
7972, 51, 31, 78, 66musumsum 20394 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  1 )
8033zcnd 10085 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
8180adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( mmu `  n )  e.  CC )
8232adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  NN )
8382nnrpd 10356 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  RR+ )
8483rpcnne0d 10366 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
85 divdiv1 9439 . . . . . . . . . . . . . . 15  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 )  /\  ( m  e.  CC  /\  m  =/=  0 ) )  -> 
( ( ( mmu `  n )  /  n
)  /  m )  =  ( ( mmu `  n )  /  (
n  x.  m ) ) )
8681, 84, 41, 85syl3anc 1187 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
( mmu `  n
)  /  n )  /  m )  =  ( ( mmu `  n )  /  (
n  x.  m ) ) )
8736adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
8839nncnd 9730 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  CC )
8939nnne0d 9758 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  =/=  0 )
9087, 88, 89divrecd 9507 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
( mmu `  n
)  /  n )  /  m )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
91 nnmulcl 9737 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( n  x.  m
)  e.  NN )
9232, 38, 91syl2an 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  NN )
9392nncnd 9730 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  CC )
9492nnne0d 9758 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  =/=  0
)
9581, 93, 94divrecd 9507 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  /  ( n  x.  m ) )  =  ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) ) )
9686, 90, 953eqtr3rd 2299 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  x.  ( 1  /  (
n  x.  m ) ) )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9796sumeq2dv 12141 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9837, 36, 43fsummulc2 12211 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9997, 98eqtr4d 2293 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) )  =  ( ( ( mmu `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) ) )
10099sumeq2dv 12141 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( 1  /  ( n  x.  m ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
10169, 79, 1003eqtr3rd 2299 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  =  1 )
102101oveq1d 5807 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
10350, 54, 1023eqtrd 2294 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
104103adantl 454 . . . . . 6  |-  ( (  T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
10525, 26, 28, 104o1eq 12009 . . . . 5  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O ( 1 )  <-> 
( x  e.  RR+  |->  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  e.  O ( 1 ) ) )
10621, 105mpbii 204 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  e.  O ( 1 ) )
1075, 20, 106o1dif 12068 . . 3  |-  (  T. 
->  ( ( x  e.  RR+  |->  1 )  e.  O ( 1 )  <-> 
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 ) ) )
1084, 107mpbii 204 . 2  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 ) )
109108trud 1320 1  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    T. wtru 1312    = wceq 1619    e. wcel 1621    =/= wne 2421   {crab 2522   _Vcvv 2763    C_ wss 3127   class class class wbr 3997    e. cmpt 4051   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    x. cmul 8710    <_ cle 8836    - cmin 9005    / cdiv 9391   NNcn 9714   ZZcz 9991   ZZ>=cuz 10197   RR+crp 10321   ...cfz 10748   |_cfl 10890   O ( 1 )co1 11925   sum_csu 12123    || cdivides 12493   logclog 19874   mmucmu 20294
This theorem is referenced by:  mulog2sumlem3  20647  selberglem1  20656
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-disj 3968  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9933  df-z 9992  df-dec 10092  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ioo 10626  df-ioc 10627  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-fac 11255  df-bc 11282  df-hash 11304  df-shft 11527  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-clim 11927  df-rlim 11928  df-o1 11929  df-lo1 11930  df-sum 12124  df-ef 12311  df-e 12312  df-sin 12313  df-cos 12314  df-pi 12316  df-divides 12494  df-gcd 12648  df-prime 12721  df-pc 12852  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-ress 13117  df-plusg 13183  df-mulr 13184  df-starv 13185  df-sca 13186  df-vsca 13187  df-tset 13189  df-ple 13190  df-ds 13192  df-hom 13194  df-cco 13195  df-rest 13289  df-topn 13290  df-topgen 13306  df-pt 13307  df-prds 13310  df-xrs 13365  df-0g 13366  df-gsum 13367  df-qtop 13372  df-imas 13373  df-xps 13375  df-mre 13450  df-mrc 13451  df-acs 13453  df-mnd 14329  df-submnd 14378  df-mulg 14454  df-cntz 14755  df-cmn 15053  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-cnfld 16340  df-top 16598  df-bases 16600  df-topon 16601  df-topsp 16602  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-lp 16830  df-perf 16831  df-cn 16919  df-cnp 16920  df-haus 17005  df-tx 17219  df-hmeo 17408  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-xms 17847  df-ms 17848  df-tms 17849  df-cncf 18344  df-limc 19178  df-dv 19179  df-log 19876  df-em 20249  df-mu 20300
  Copyright terms: Public domain W3C validator