MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulogsum Unicode version

Theorem mulogsum 20608
Description: Asymptotic formula for  sum_ n  <_  x ,  ( mmu ( n )  /  n ) log (
x  /  n )  =  O ( 1 ). Equation 10.2.6 of [Shapiro], p. 406. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mulogsum  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 )
Distinct variable group:    x, n

Proof of Theorem mulogsum
StepHypRef Expression
1 rpssre 10296 . . . 4  |-  RR+  C_  RR
2 ax-1cn 8728 . . . 4  |-  1  e.  CC
3 o1const 12023 . . . 4  |-  ( (
RR+  C_  RR  /\  1  e.  CC )  ->  (
x  e.  RR+  |->  1 )  e.  O ( 1 ) )
41, 2, 3mp2an 656 . . 3  |-  ( x  e.  RR+  |->  1 )  e.  O ( 1 )
52a1i 12 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  1  e.  CC )
6 fzfid 10966 . . . . . 6  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
7 elfznn 10750 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
87adantl 454 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
9 mucl 20306 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
108, 9syl 17 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
1110zred 10049 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
1211, 8nndivred 9727 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
137nnrpd 10321 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
14 rpdivcl 10308 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
1513, 14sylan2 462 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
1615relogcld 19901 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
1712, 16remulcld 8796 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  RR )
1817recnd 8794 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
196, 18fsumcl 12136 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e.  CC )
2019adantl 454 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e.  CC )
21 mulogsumlem 20607 . . . . 5  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O ( 1 )
22 sumex 12090 . . . . . . . 8  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  _V
2322a1i 12 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  _V )
2421a1i 12 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O ( 1 ) )
2523, 24o1mptrcl 12026 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  CC )
265, 20subcld 9090 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 1  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  CC )
27 1re 8770 . . . . . . 7  |-  1  e.  RR
2827a1i 12 . . . . . 6  |-  (  T. 
->  1  e.  RR )
29 elfznn 10750 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
3029ssriv 3126 . . . . . . . . . . . . . . . 16  |-  ( 1 ... ( |_ `  x ) )  C_  NN
3130a1i 12 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  C_  NN )
3231sselda 3122 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
3332, 9syl 17 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
3433zred 10049 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
3534, 32nndivred 9727 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  RR )
3635recnd 8794 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  CC )
37 fzfid 10966 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  n ) ) )  e.  Fin )
38 elfznn 10750 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
3938adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  NN )
4039nnrpd 10321 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  RR+ )
4140rpcnne0d 10331 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
42 reccl 9364 . . . . . . . . . . . 12  |-  ( ( m  e.  CC  /\  m  =/=  0 )  -> 
( 1  /  m
)  e.  CC )
4341, 42syl 17 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  CC )
4437, 43fsumcl 12136 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  e.  CC )
45 simpl 445 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR+ )
4645, 13, 14syl2an 465 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
4746relogcld 19901 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( log `  (
x  /  n ) )  e.  RR )
4847recnd 8794 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( log `  (
x  /  n ) )  e.  CC )
4936, 44, 48subdid 9168 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  =  ( ( ( ( mmu `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
5049sumeq2dv 12106 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
51 fzfid 10966 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
5236, 44mulcld 8788 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  e.  CC )
5318adantlr 698 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
5451, 52, 53fsumsub 12180 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
55 oveq2 5765 . . . . . . . . . . . 12  |-  ( k  =  ( n  x.  m )  ->  (
1  /  k )  =  ( 1  / 
( n  x.  m
) ) )
5655oveq2d 5773 . . . . . . . . . . 11  |-  ( k  =  ( n  x.  m )  ->  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) ) )
57 rpre 10292 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
5857adantr 453 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR )
59 ssrab2 3200 . . . . . . . . . . . . . . 15  |-  { y  e.  NN  |  y 
||  k }  C_  NN
60 simprr 736 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
6159, 60sseldi 3120 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  NN )
6261, 9syl 17 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  ZZ )
6362zcnd 10050 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  CC )
6429adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
6564nnrecred 9724 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1  / 
k )  e.  RR )
6665recnd 8794 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1  / 
k )  e.  CC )
6766adantrr 700 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
1  /  k )  e.  CC )
6863, 67mulcld 8788 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
( mmu `  n
)  x.  ( 1  /  k ) )  e.  CC )
6956, 58, 68dvdsflsumcom 20355 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( 1  /  ( n  x.  m ) ) ) )
70 oveq2 5765 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
1  /  k )  =  ( 1  / 
1 ) )
712div1i 9421 . . . . . . . . . . . 12  |-  ( 1  /  1 )  =  1
7270, 71syl6eq 2304 . . . . . . . . . . 11  |-  ( k  =  1  ->  (
1  /  k )  =  1 )
73 flge1nn 10880 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
7457, 73sylan 459 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  NN )
75 nnuz 10195 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
7674, 75syl6eleq 2346 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
77 eluzfz1 10734 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
7876, 77syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
7972, 51, 31, 78, 66musumsum 20359 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  1 )
8033zcnd 10050 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
8180adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( mmu `  n )  e.  CC )
8232adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  NN )
8382nnrpd 10321 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  RR+ )
8483rpcnne0d 10331 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
85 divdiv1 9404 . . . . . . . . . . . . . . 15  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 )  /\  ( m  e.  CC  /\  m  =/=  0 ) )  -> 
( ( ( mmu `  n )  /  n
)  /  m )  =  ( ( mmu `  n )  /  (
n  x.  m ) ) )
8681, 84, 41, 85syl3anc 1187 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
( mmu `  n
)  /  n )  /  m )  =  ( ( mmu `  n )  /  (
n  x.  m ) ) )
8736adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
8839nncnd 9695 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  CC )
8939nnne0d 9723 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  =/=  0 )
9087, 88, 89divrecd 9472 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
( mmu `  n
)  /  n )  /  m )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
91 nnmulcl 9702 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( n  x.  m
)  e.  NN )
9232, 38, 91syl2an 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  NN )
9392nncnd 9695 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  CC )
9492nnne0d 9723 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  =/=  0
)
9581, 93, 94divrecd 9472 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  /  ( n  x.  m ) )  =  ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) ) )
9686, 90, 953eqtr3rd 2297 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  x.  ( 1  /  (
n  x.  m ) ) )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9796sumeq2dv 12106 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9837, 36, 43fsummulc2 12176 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9997, 98eqtr4d 2291 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) )  =  ( ( ( mmu `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) ) )
10099sumeq2dv 12106 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( 1  /  ( n  x.  m ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
10169, 79, 1003eqtr3rd 2297 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  =  1 )
102101oveq1d 5772 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
10350, 54, 1023eqtrd 2292 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
104103adantl 454 . . . . . 6  |-  ( (  T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
10525, 26, 28, 104o1eq 11974 . . . . 5  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O ( 1 )  <-> 
( x  e.  RR+  |->  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  e.  O ( 1 ) ) )
10621, 105mpbii 204 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  e.  O ( 1 ) )
1075, 20, 106o1dif 12033 . . 3  |-  (  T. 
->  ( ( x  e.  RR+  |->  1 )  e.  O ( 1 )  <-> 
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 ) ) )
1084, 107mpbii 204 . 2  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 ) )
109108trud 1320 1  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    T. wtru 1312    = wceq 1619    e. wcel 1621    =/= wne 2419   {crab 2519   _Vcvv 2740    C_ wss 3094   class class class wbr 3963    e. cmpt 4017   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671    x. cmul 8675    <_ cle 8801    - cmin 8970    / cdiv 9356   NNcn 9679   ZZcz 9956   ZZ>=cuz 10162   RR+crp 10286   ...cfz 10713   |_cfl 10855   O ( 1 )co1 11890   sum_csu 12088    || cdivides 12458   logclog 19839   mmucmu 20259
This theorem is referenced by:  mulog2sumlem3  20612  selberglem1  20621
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-disj 3935  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ioc 10592  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-mod 10905  df-seq 10978  df-exp 11036  df-fac 11220  df-bc 11247  df-hash 11269  df-shft 11492  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-limsup 11875  df-clim 11892  df-rlim 11893  df-o1 11894  df-lo1 11895  df-sum 12089  df-ef 12276  df-e 12277  df-sin 12278  df-cos 12279  df-pi 12281  df-divides 12459  df-gcd 12613  df-prime 12686  df-pc 12817  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-lp 16795  df-perf 16796  df-cn 16884  df-cnp 16885  df-haus 16970  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cncf 18309  df-limc 19143  df-dv 19144  df-log 19841  df-em 20214  df-mu 20265
  Copyright terms: Public domain W3C validator