MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musumsum Unicode version

Theorem musumsum 20448
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
musumsum.1  |-  ( m  =  1  ->  B  =  C )
musumsum.2  |-  ( ph  ->  A  e.  Fin )
musumsum.3  |-  ( ph  ->  A  C_  NN )
musumsum.4  |-  ( ph  ->  1  e.  A )
musumsum.5  |-  ( (
ph  /\  m  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
musumsum  |-  ( ph  -> 
sum_ m  e.  A  sum_ k  e.  { n  e.  NN  |  n  ||  m }  ( (
mmu `  k )  x.  B )  =  C )
Distinct variable groups:    k, m, A    k, n, m    ph, k, m    B, k    C, m
Allowed substitution hints:    ph( n)    A( n)    B( m, n)    C( k, n)

Proof of Theorem musumsum
StepHypRef Expression
1 musumsum.3 . . . . . . 7  |-  ( ph  ->  A  C_  NN )
21sselda 3193 . . . . . 6  |-  ( (
ph  /\  m  e.  A )  ->  m  e.  NN )
3 musum 20447 . . . . . 6  |-  ( m  e.  NN  ->  sum_ k  e.  { n  e.  NN  |  n  ||  m } 
( mmu `  k
)  =  if ( m  =  1 ,  1 ,  0 ) )
42, 3syl 15 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  sum_ k  e.  { n  e.  NN  |  n  ||  m } 
( mmu `  k
)  =  if ( m  =  1 ,  1 ,  0 ) )
54oveq1d 5889 . . . 4  |-  ( (
ph  /\  m  e.  A )  ->  ( sum_ k  e.  { n  e.  NN  |  n  ||  m }  ( mmu `  k )  x.  B
)  =  ( if ( m  =  1 ,  1 ,  0 )  x.  B ) )
6 fzfid 11051 . . . . . 6  |-  ( (
ph  /\  m  e.  A )  ->  (
1 ... m )  e. 
Fin )
7 sgmss 20360 . . . . . . 7  |-  ( m  e.  NN  ->  { n  e.  NN  |  n  ||  m }  C_  ( 1 ... m ) )
82, 7syl 15 . . . . . 6  |-  ( (
ph  /\  m  e.  A )  ->  { n  e.  NN  |  n  ||  m }  C_  ( 1 ... m ) )
9 ssfi 7099 . . . . . 6  |-  ( ( ( 1 ... m
)  e.  Fin  /\  { n  e.  NN  |  n  ||  m }  C_  ( 1 ... m
) )  ->  { n  e.  NN  |  n  ||  m }  e.  Fin )
106, 8, 9syl2anc 642 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  { n  e.  NN  |  n  ||  m }  e.  Fin )
11 musumsum.5 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  B  e.  CC )
12 ssrab2 3271 . . . . . . . . 9  |-  { n  e.  NN  |  n  ||  m }  C_  NN
1312sseli 3189 . . . . . . . 8  |-  ( k  e.  { n  e.  NN  |  n  ||  m }  ->  k  e.  NN )
14 mucl 20395 . . . . . . . 8  |-  ( k  e.  NN  ->  (
mmu `  k )  e.  ZZ )
1513, 14syl 15 . . . . . . 7  |-  ( k  e.  { n  e.  NN  |  n  ||  m }  ->  ( mmu `  k )  e.  ZZ )
1615zcnd 10134 . . . . . 6  |-  ( k  e.  { n  e.  NN  |  n  ||  m }  ->  ( mmu `  k )  e.  CC )
1716adantl 452 . . . . 5  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  { n  e.  NN  |  n  ||  m }
)  ->  ( mmu `  k )  e.  CC )
1810, 11, 17fsummulc1 12263 . . . 4  |-  ( (
ph  /\  m  e.  A )  ->  ( sum_ k  e.  { n  e.  NN  |  n  ||  m }  ( mmu `  k )  x.  B
)  =  sum_ k  e.  { n  e.  NN  |  n  ||  m } 
( ( mmu `  k )  x.  B
) )
19 oveq1 5881 . . . . . 6  |-  ( if ( m  =  1 ,  1 ,  0 )  =  1  -> 
( if ( m  =  1 ,  1 ,  0 )  x.  B )  =  ( 1  x.  B ) )
20 oveq1 5881 . . . . . 6  |-  ( if ( m  =  1 ,  1 ,  0 )  =  0  -> 
( if ( m  =  1 ,  1 ,  0 )  x.  B )  =  ( 0  x.  B ) )
2119, 20ifsb 3587 . . . . 5  |-  ( if ( m  =  1 ,  1 ,  0 )  x.  B )  =  if ( m  =  1 ,  ( 1  x.  B ) ,  ( 0  x.  B ) )
22 elsn 3668 . . . . . . . . 9  |-  ( m  e.  { 1 }  <-> 
m  =  1 )
2322bicomi 193 . . . . . . . 8  |-  ( m  =  1  <->  m  e.  { 1 } )
2423a1i 10 . . . . . . 7  |-  ( B  e.  CC  ->  (
m  =  1  <->  m  e.  { 1 } ) )
25 mulid2 8852 . . . . . . 7  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
26 mul02 9006 . . . . . . 7  |-  ( B  e.  CC  ->  (
0  x.  B )  =  0 )
2724, 25, 26ifbieq12d 3600 . . . . . 6  |-  ( B  e.  CC  ->  if ( m  =  1 ,  ( 1  x.  B ) ,  ( 0  x.  B ) )  =  if ( m  e.  { 1 } ,  B , 
0 ) )
2811, 27syl 15 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  if ( m  =  1 ,  ( 1  x.  B ) ,  ( 0  x.  B ) )  =  if ( m  e.  { 1 } ,  B , 
0 ) )
2921, 28syl5eq 2340 . . . 4  |-  ( (
ph  /\  m  e.  A )  ->  ( if ( m  =  1 ,  1 ,  0 )  x.  B )  =  if ( m  e.  { 1 } ,  B ,  0 ) )
305, 18, 293eqtr3d 2336 . . 3  |-  ( (
ph  /\  m  e.  A )  ->  sum_ k  e.  { n  e.  NN  |  n  ||  m } 
( ( mmu `  k )  x.  B
)  =  if ( m  e.  { 1 } ,  B , 
0 ) )
3130sumeq2dv 12192 . 2  |-  ( ph  -> 
sum_ m  e.  A  sum_ k  e.  { n  e.  NN  |  n  ||  m }  ( (
mmu `  k )  x.  B )  =  sum_ m  e.  A  if ( m  e.  { 1 } ,  B , 
0 ) )
32 musumsum.4 . . . 4  |-  ( ph  ->  1  e.  A )
3332snssd 3776 . . 3  |-  ( ph  ->  { 1 }  C_  A )
3433sselda 3193 . . . . 5  |-  ( (
ph  /\  m  e.  { 1 } )  ->  m  e.  A )
3534, 11syldan 456 . . . 4  |-  ( (
ph  /\  m  e.  { 1 } )  ->  B  e.  CC )
3635ralrimiva 2639 . . 3  |-  ( ph  ->  A. m  e.  {
1 } B  e.  CC )
37 musumsum.2 . . . 4  |-  ( ph  ->  A  e.  Fin )
3837olcd 382 . . 3  |-  ( ph  ->  ( A  C_  ( ZZ>=
`  1 )  \/  A  e.  Fin )
)
39 sumss2 12215 . . 3  |-  ( ( ( { 1 } 
C_  A  /\  A. m  e.  { 1 } B  e.  CC )  /\  ( A  C_  ( ZZ>= `  1 )  \/  A  e.  Fin ) )  ->  sum_ m  e.  { 1 } B  =  sum_ m  e.  A  if ( m  e.  {
1 } ,  B ,  0 ) )
4033, 36, 38, 39syl21anc 1181 . 2  |-  ( ph  -> 
sum_ m  e.  { 1 } B  =  sum_ m  e.  A  if ( m  e.  { 1 } ,  B , 
0 ) )
4111ralrimiva 2639 . . . 4  |-  ( ph  ->  A. m  e.  A  B  e.  CC )
42 musumsum.1 . . . . . 6  |-  ( m  =  1  ->  B  =  C )
4342eleq1d 2362 . . . . 5  |-  ( m  =  1  ->  ( B  e.  CC  <->  C  e.  CC ) )
4443rspcv 2893 . . . 4  |-  ( 1  e.  A  ->  ( A. m  e.  A  B  e.  CC  ->  C  e.  CC ) )
4532, 41, 44sylc 56 . . 3  |-  ( ph  ->  C  e.  CC )
4642sumsn 12229 . . 3  |-  ( ( 1  e.  A  /\  C  e.  CC )  -> 
sum_ m  e.  { 1 } B  =  C )
4732, 45, 46syl2anc 642 . 2  |-  ( ph  -> 
sum_ m  e.  { 1 } B  =  C )
4831, 40, 473eqtr2d 2334 1  |-  ( ph  -> 
sum_ m  e.  A  sum_ k  e.  { n  e.  NN  |  n  ||  m }  ( (
mmu `  k )  x.  B )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560    C_ wss 3165   ifcif 3578   {csn 3653   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Fincfn 6879   CCcc 8751   0cc0 8753   1c1 8754    x. cmul 8758   NNcn 9762   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798   sum_csu 12174    || cdivides 12547   mmucmu 20348
This theorem is referenced by:  dchrmusum2  20659  dchrvmasum2lem  20661  mudivsum  20695  mulogsum  20697  mulog2sumlem2  20700
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-mu 20354
  Copyright terms: Public domain W3C validator