MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrf1 Unicode version

Theorem mvrf1 16166
Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
mvrf.s  |-  S  =  ( I mPwSer  R )
mvrf.v  |-  V  =  ( I mVar  R )
mvrf.b  |-  B  =  ( Base `  S
)
mvrf.i  |-  ( ph  ->  I  e.  W )
mvrf.r  |-  ( ph  ->  R  e.  Ring )
mvrf1.z  |-  .0.  =  ( 0g `  R )
mvrf1.o  |-  .1.  =  ( 1r `  R )
mvrf1.n  |-  ( ph  ->  .1.  =/=  .0.  )
Assertion
Ref Expression
mvrf1  |-  ( ph  ->  V : I -1-1-> B
)

Proof of Theorem mvrf1
Dummy variables  h  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrf.s . . 3  |-  S  =  ( I mPwSer  R )
2 mvrf.v . . 3  |-  V  =  ( I mVar  R )
3 mvrf.b . . 3  |-  B  =  ( Base `  S
)
4 mvrf.i . . 3  |-  ( ph  ->  I  e.  W )
5 mvrf.r . . 3  |-  ( ph  ->  R  e.  Ring )
61, 2, 3, 4, 5mvrf 16165 . 2  |-  ( ph  ->  V : I --> B )
7 mvrf1.n . . . . . 6  |-  ( ph  ->  .1.  =/=  .0.  )
87adantr 451 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) ) )  ->  .1.  =/=  .0.  )
9 simp2r 982 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  ( V `  x )  =  ( V `  y ) )
109fveq1d 5488 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
( V `  x
) `  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) )  =  ( ( V `  y
) `  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ) )
11 eqid 2284 . . . . . . . . . 10  |-  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
12 mvrf1.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  R )
13 mvrf1.o . . . . . . . . . 10  |-  .1.  =  ( 1r `  R )
1443ad2ant1 976 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  I  e.  W )
1553ad2ant1 976 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  R  e.  Ring )
16 simp2ll 1022 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  x  e.  I )
172, 11, 12, 13, 14, 15, 16mvrid 16164 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
( V `  x
) `  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) )  =  .1.  )
18 simp2lr 1023 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  y  e.  I )
1911mvridlem 16160 . . . . . . . . . . 11  |-  ( I  e.  W  ->  (
z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  e.  {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin } )
2014, 19syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  e.  {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin } )
212, 11, 12, 13, 14, 15, 18, 20mvrval2 16163 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
( V `  y
) `  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) )  =  if ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) )
2210, 17, 213eqtr3d 2324 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  .1.  =  if ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) )
23 simp3 957 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  -.  x  =  y )
24 mpteqb 5576 . . . . . . . . . . . . . 14  |-  ( A. z  e.  I  if ( z  =  x ,  1 ,  0 )  e.  NN0  ->  ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  <->  A. z  e.  I  if (
z  =  x ,  1 ,  0 )  =  if ( z  =  y ,  1 ,  0 ) ) )
25 1nn0 9977 . . . . . . . . . . . . . . . 16  |-  1  e.  NN0
26 0nn0 9976 . . . . . . . . . . . . . . . 16  |-  0  e.  NN0
2725, 26keepel 3623 . . . . . . . . . . . . . . 15  |-  if ( z  =  x ,  1 ,  0 )  e.  NN0
2827a1i 10 . . . . . . . . . . . . . 14  |-  ( z  e.  I  ->  if ( z  =  x ,  1 ,  0 )  e.  NN0 )
2924, 28mprg 2613 . . . . . . . . . . . . 13  |-  ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  <->  A. z  e.  I  if (
z  =  x ,  1 ,  0 )  =  if ( z  =  y ,  1 ,  0 ) )
30 iftrue 3572 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  if ( z  =  x ,  1 ,  0 )  =  1 )
31 eqeq1 2290 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  (
z  =  y  <->  x  =  y ) )
3231ifbid 3584 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  if ( z  =  y ,  1 ,  0 )  =  if ( x  =  y ,  1 ,  0 ) )
3330, 32eqeq12d 2298 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  ( if ( z  =  x ,  1 ,  0 )  =  if ( z  =  y ,  1 ,  0 )  <->  1  =  if ( x  =  y ,  1 ,  0 ) ) )
3433rspcv 2881 . . . . . . . . . . . . 13  |-  ( x  e.  I  ->  ( A. z  e.  I  if ( z  =  x ,  1 ,  0 )  =  if ( z  =  y ,  1 ,  0 )  ->  1  =  if ( x  =  y ,  1 ,  0 ) ) )
3529, 34syl5bi 208 . . . . . . . . . . . 12  |-  ( x  e.  I  ->  (
( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  -> 
1  =  if ( x  =  y ,  1 ,  0 ) ) )
3616, 35syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  -> 
1  =  if ( x  =  y ,  1 ,  0 ) ) )
37 ax-1ne0 8802 . . . . . . . . . . . . 13  |-  1  =/=  0
38 eqeq1 2290 . . . . . . . . . . . . . 14  |-  ( 1  =  if ( x  =  y ,  1 ,  0 )  -> 
( 1  =  0  <-> 
if ( x  =  y ,  1 ,  0 )  =  0 ) )
3938necon3abid 2480 . . . . . . . . . . . . 13  |-  ( 1  =  if ( x  =  y ,  1 ,  0 )  -> 
( 1  =/=  0  <->  -.  if ( x  =  y ,  1 ,  0 )  =  0 ) )
4037, 39mpbii 202 . . . . . . . . . . . 12  |-  ( 1  =  if ( x  =  y ,  1 ,  0 )  ->  -.  if ( x  =  y ,  1 ,  0 )  =  0 )
41 iffalse 3573 . . . . . . . . . . . 12  |-  ( -.  x  =  y  ->  if ( x  =  y ,  1 ,  0 )  =  0 )
4240, 41nsyl2 119 . . . . . . . . . . 11  |-  ( 1  =  if ( x  =  y ,  1 ,  0 )  ->  x  =  y )
4336, 42syl6 29 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  ->  x  =  y )
)
4423, 43mtod 168 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  -.  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) ) )
45 iffalse 3573 . . . . . . . . 9  |-  ( -.  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  ->  if ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) ) ,  .1.  ,  .0.  )  =  .0.  )
4644, 45syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  if ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) ) ,  .1.  ,  .0.  )  =  .0.  )
4722, 46eqtrd 2316 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  .1.  =  .0.  )
48473expia 1153 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) ) )  ->  ( -.  x  =  y  ->  .1.  =  .0.  ) )
4948necon1ad 2514 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) ) )  ->  (  .1.  =/=  .0.  ->  x  =  y ) )
508, 49mpd 14 . . . 4  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) ) )  ->  x  =  y )
5150expr 598 . . 3  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I ) )  -> 
( ( V `  x )  =  ( V `  y )  ->  x  =  y ) )
5251ralrimivva 2636 . 2  |-  ( ph  ->  A. x  e.  I  A. y  e.  I 
( ( V `  x )  =  ( V `  y )  ->  x  =  y ) )
53 dff13 5745 . 2  |-  ( V : I -1-1-> B  <->  ( V : I --> B  /\  A. x  e.  I  A. y  e.  I  (
( V `  x
)  =  ( V `
 y )  ->  x  =  y )
) )
546, 52, 53sylanbrc 645 1  |-  ( ph  ->  V : I -1-1-> B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   A.wral 2544   {crab 2548   ifcif 3566    e. cmpt 4078   `'ccnv 4687   "cima 4691   -->wf 5217   -1-1->wf1 5218   ` cfv 5221  (class class class)co 5820    ^m cmap 6768   Fincfn 6859   0cc0 8733   1c1 8734   NNcn 9742   NN0cn0 9961   Basecbs 13144   0gc0g 13396   Ringcrg 15333   1rcur 15335   mPwSer cmps 16083   mVar cmvr 16084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-n0 9962  df-z 10021  df-uz 10227  df-fz 10779  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-plusg 13217  df-mulr 13218  df-sca 13220  df-vsca 13221  df-tset 13223  df-0g 13400  df-mnd 14363  df-grp 14485  df-mgp 15322  df-rng 15336  df-ur 15338  df-psr 16094  df-mvr 16095
  Copyright terms: Public domain W3C validator