MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvth Unicode version

Theorem mvth 19341
Description: The Mean Value Theorem. If  F is a real continuous function on  [ A ,  B ] which is differentiable on  ( A ,  B
), then there is some  x  e.  ( A ,  B ) such that  ( RR  _D  F
) `  x is equal to the average slope over  [ A ,  B ]. (Contributed by Mario Carneiro, 1-Sep-2014.) (Proof shortened by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
mvth.a  |-  ( ph  ->  A  e.  RR )
mvth.b  |-  ( ph  ->  B  e.  RR )
mvth.lt  |-  ( ph  ->  A  <  B )
mvth.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
mvth.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
Assertion
Ref Expression
mvth  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  ( ( ( F `  B
)  -  ( F `
 A ) )  /  ( B  -  A ) ) )
Distinct variable groups:    x, A    x, B    x, F    ph, x

Proof of Theorem mvth
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mvth.a . . 3  |-  ( ph  ->  A  e.  RR )
2 mvth.b . . 3  |-  ( ph  ->  B  e.  RR )
3 mvth.lt . . 3  |-  ( ph  ->  A  <  B )
4 mvth.f . . 3  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
5 mptresid 5006 . . . 4  |-  ( z  e.  ( A [,] B )  |->  z )  =  (  _I  |`  ( A [,] B ) )
6 iccssre 10733 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
71, 2, 6syl2anc 642 . . . . 5  |-  ( ph  ->  ( A [,] B
)  C_  RR )
8 ax-resscn 8796 . . . . 5  |-  RR  C_  CC
9 cncfmptid 18418 . . . . 5  |-  ( ( ( A [,] B
)  C_  RR  /\  RR  C_  CC )  ->  (
z  e.  ( A [,] B )  |->  z )  e.  ( ( A [,] B )
-cn-> RR ) )
107, 8, 9sylancl 643 . . . 4  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  z )  e.  ( ( A [,] B
) -cn-> RR ) )
115, 10syl5eqelr 2370 . . 3  |-  ( ph  ->  (  _I  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
12 mvth.d . . 3  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
135oveq2i 5871 . . . . . 6  |-  ( RR 
_D  ( z  e.  ( A [,] B
)  |->  z ) )  =  ( RR  _D  (  _I  |`  ( A [,] B ) ) )
14 reex 8830 . . . . . . . . 9  |-  RR  e.  _V
1514prid1 3736 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
1615a1i 10 . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
17 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  z  e.  RR )  ->  z  e.  RR )
1817recnd 8863 . . . . . . 7  |-  ( (
ph  /\  z  e.  RR )  ->  z  e.  CC )
19 1re 8839 . . . . . . . 8  |-  1  e.  RR
2019a1i 10 . . . . . . 7  |-  ( (
ph  /\  z  e.  RR )  ->  1  e.  RR )
2116dvmptid 19308 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
z  e.  RR  |->  z ) )  =  ( z  e.  RR  |->  1 ) )
22 eqid 2285 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2322tgioo2 18311 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
24 iccntr 18328 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
251, 2, 24syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
2616, 18, 20, 21, 7, 23, 22, 25dvmptres2 19313 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A [,] B )  |->  z ) )  =  ( z  e.  ( A (,) B )  |->  1 ) )
2713, 26syl5eqr 2331 . . . . 5  |-  ( ph  ->  ( RR  _D  (  _I  |`  ( A [,] B ) ) )  =  ( z  e.  ( A (,) B
)  |->  1 ) )
2827dmeqd 4883 . . . 4  |-  ( ph  ->  dom  ( RR  _D  (  _I  |`  ( A [,] B ) ) )  =  dom  (
z  e.  ( A (,) B )  |->  1 ) )
29 1ex 8835 . . . . 5  |-  1  e.  _V
30 eqid 2285 . . . . 5  |-  ( z  e.  ( A (,) B )  |->  1 )  =  ( z  e.  ( A (,) B
)  |->  1 )
3129, 30dmmpti 5375 . . . 4  |-  dom  (
z  e.  ( A (,) B )  |->  1 )  =  ( A (,) B )
3228, 31syl6eq 2333 . . 3  |-  ( ph  ->  dom  ( RR  _D  (  _I  |`  ( A [,] B ) ) )  =  ( A (,) B ) )
331, 2, 3, 4, 11, 12, 32cmvth 19340 . 2  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) )  =  ( ( ( (  _I  |`  ( A [,] B ) ) `  B )  -  (
(  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) ) )
341rexrd 8883 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR* )
352rexrd 8883 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR* )
361, 2, 3ltled 8969 . . . . . . . . . . 11  |-  ( ph  ->  A  <_  B )
37 ubicc2 10755 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
3834, 35, 36, 37syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( A [,] B ) )
39 fvresi 5713 . . . . . . . . . 10  |-  ( B  e.  ( A [,] B )  ->  (
(  _I  |`  ( A [,] B ) ) `
 B )  =  B )
4038, 39syl 15 . . . . . . . . 9  |-  ( ph  ->  ( (  _I  |`  ( A [,] B ) ) `
 B )  =  B )
41 lbicc2 10754 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
4234, 35, 36, 41syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ( A [,] B ) )
43 fvresi 5713 . . . . . . . . . 10  |-  ( A  e.  ( A [,] B )  ->  (
(  _I  |`  ( A [,] B ) ) `
 A )  =  A )
4442, 43syl 15 . . . . . . . . 9  |-  ( ph  ->  ( (  _I  |`  ( A [,] B ) ) `
 A )  =  A )
4540, 44oveq12d 5878 . . . . . . . 8  |-  ( ph  ->  ( ( (  _I  |`  ( A [,] B
) ) `  B
)  -  ( (  _I  |`  ( A [,] B ) ) `  A ) )  =  ( B  -  A
) )
4645adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
(  _I  |`  ( A [,] B ) ) `
 B )  -  ( (  _I  |`  ( A [,] B ) ) `
 A ) )  =  ( B  -  A ) )
4746oveq1d 5875 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( (  _I  |`  ( A [,] B ) ) `
 B )  -  ( (  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  =  ( ( B  -  A )  x.  (
( RR  _D  F
) `  x )
) )
4827fveq1d 5529 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  _D  (  _I  |`  ( A [,] B ) ) ) `  x )  =  ( ( z  e.  ( A (,) B )  |->  1 ) `
 x ) )
49 eqidd 2286 . . . . . . . . . 10  |-  ( z  =  x  ->  1  =  1 )
5049, 30, 29fvmpt3i 5607 . . . . . . . . 9  |-  ( x  e.  ( A (,) B )  ->  (
( z  e.  ( A (,) B ) 
|->  1 ) `  x
)  =  1 )
5148, 50sylan9eq 2337 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  (  _I  |`  ( A [,] B ) ) ) `  x )  =  1 )
5251oveq2d 5876 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  (  _I  |`  ( A [,] B ) ) ) `  x ) )  =  ( ( ( F `  B
)  -  ( F `
 A ) )  x.  1 ) )
53 cncff 18399 . . . . . . . . . . . . 13  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
544, 53syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( A [,] B ) --> RR )
55 ffvelrn 5665 . . . . . . . . . . . 12  |-  ( ( F : ( A [,] B ) --> RR 
/\  B  e.  ( A [,] B ) )  ->  ( F `  B )  e.  RR )
5654, 38, 55syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  B
)  e.  RR )
57 ffvelrn 5665 . . . . . . . . . . . 12  |-  ( ( F : ( A [,] B ) --> RR 
/\  A  e.  ( A [,] B ) )  ->  ( F `  A )  e.  RR )
5854, 42, 57syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  A
)  e.  RR )
5956, 58resubcld 9213 . . . . . . . . . 10  |-  ( ph  ->  ( ( F `  B )  -  ( F `  A )
)  e.  RR )
6059recnd 8863 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  B )  -  ( F `  A )
)  e.  CC )
6160adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( F `  B )  -  ( F `  A ) )  e.  CC )
6261mulid1d 8854 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  1 )  =  ( ( F `  B )  -  ( F `  A )
) )
6352, 62eqtrd 2317 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  (  _I  |`  ( A [,] B ) ) ) `  x ) )  =  ( ( F `  B )  -  ( F `  A ) ) )
6447, 63eqeq12d 2299 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( ( (  _I  |`  ( A [,] B
) ) `  B
)  -  ( (  _I  |`  ( A [,] B ) ) `  A ) )  x.  ( ( RR  _D  F ) `  x
) )  =  ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) )  <->  ( ( B  -  A )  x.  ( ( RR  _D  F ) `  x
) )  =  ( ( F `  B
)  -  ( F `
 A ) ) ) )
652, 1resubcld 9213 . . . . . . . 8  |-  ( ph  ->  ( B  -  A
)  e.  RR )
6665recnd 8863 . . . . . . 7  |-  ( ph  ->  ( B  -  A
)  e.  CC )
6766adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( B  -  A )  e.  CC )
68 dvf 19259 . . . . . . . 8  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
6912feq2d 5382 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
7068, 69mpbii 202 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
71 ffvelrn 5665 . . . . . . 7  |-  ( ( ( RR  _D  F
) : ( A (,) B ) --> CC 
/\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
7270, 71sylan 457 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
731, 2posdifd 9361 . . . . . . . . 9  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
743, 73mpbid 201 . . . . . . . 8  |-  ( ph  ->  0  <  ( B  -  A ) )
7574gt0ne0d 9339 . . . . . . 7  |-  ( ph  ->  ( B  -  A
)  =/=  0 )
7675adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( B  -  A )  =/=  0
)
7761, 67, 72, 76divmuld 9560 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( ( F `  B )  -  ( F `  A )
)  /  ( B  -  A ) )  =  ( ( RR 
_D  F ) `  x )  <->  ( ( B  -  A )  x.  ( ( RR  _D  F ) `  x
) )  =  ( ( F `  B
)  -  ( F `
 A ) ) ) )
7864, 77bitr4d 247 . . . 4  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( ( (  _I  |`  ( A [,] B
) ) `  B
)  -  ( (  _I  |`  ( A [,] B ) ) `  A ) )  x.  ( ( RR  _D  F ) `  x
) )  =  ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) )  <->  ( (
( F `  B
)  -  ( F `
 A ) )  /  ( B  -  A ) )  =  ( ( RR  _D  F ) `  x
) ) )
79 eqcom 2287 . . . 4  |-  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) )  =  ( ( ( (  _I  |`  ( A [,] B ) ) `  B )  -  (
(  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  <->  ( (
( (  _I  |`  ( A [,] B ) ) `
 B )  -  ( (  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  =  ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) ) )
80 eqcom 2287 . . . 4  |-  ( ( ( RR  _D  F
) `  x )  =  ( ( ( F `  B )  -  ( F `  A ) )  / 
( B  -  A
) )  <->  ( (
( F `  B
)  -  ( F `
 A ) )  /  ( B  -  A ) )  =  ( ( RR  _D  F ) `  x
) )
8178, 79, 803bitr4g 279 . . 3  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) )  =  ( ( ( (  _I  |`  ( A [,] B ) ) `  B )  -  (
(  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  <->  ( ( RR  _D  F ) `  x )  =  ( ( ( F `  B )  -  ( F `  A )
)  /  ( B  -  A ) ) ) )
8281rexbidva 2562 . 2  |-  ( ph  ->  ( E. x  e.  ( A (,) B
) ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  (  _I  |`  ( A [,] B ) ) ) `  x ) )  =  ( ( ( (  _I  |`  ( A [,] B ) ) `
 B )  -  ( (  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  <->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  B )  -  ( F `  A )
)  /  ( B  -  A ) ) ) )
8333, 82mpbid 201 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  ( ( ( F `  B
)  -  ( F `
 A ) )  /  ( B  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   E.wrex 2546    C_ wss 3154   {cpr 3643   class class class wbr 4025    e. cmpt 4079    _I cid 4306   dom cdm 4691   ran crn 4692    |` cres 4693   -->wf 5253   ` cfv 5257  (class class class)co 5860   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740    x. cmul 8744   RR*cxr 8868    < clt 8869    <_ cle 8870    - cmin 9039    / cdiv 9425   (,)cioo 10658   [,]cicc 10661   TopOpenctopn 13328   topGenctg 13344  ℂfldccnfld 16379   intcnt 16756   -cn->ccncf 18382    _D cdv 19215
This theorem is referenced by:  dvlip  19342  c1liplem1  19345  dvgt0lem1  19351  dvcvx  19369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-cmp 17116  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219
  Copyright terms: Public domain W3C validator