Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nb3grapr Unicode version

Theorem nb3grapr 27616
Description: The neighbors of a vertex in a graph with three elements are an unordered pair of the other vertices if and only if all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.)
Assertion
Ref Expression
nb3grapr  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  x )  =  {
y ,  z } ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, E, y, z    x, V, y, z
Allowed substitution hints:    X( x, y, z)    Y( x, y, z)    Z( x, y, z)

Proof of Theorem nb3grapr
StepHypRef Expression
1 id 19 . . . . . 6  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  -> 
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )
2 prcom 3781 . . . . . . . . . 10  |-  { A ,  B }  =  { B ,  A }
32eleq1i 2421 . . . . . . . . 9  |-  ( { A ,  B }  e.  ran  E  <->  { B ,  A }  e.  ran  E )
4 prcom 3781 . . . . . . . . . 10  |-  { B ,  C }  =  { C ,  B }
54eleq1i 2421 . . . . . . . . 9  |-  ( { B ,  C }  e.  ran  E  <->  { C ,  B }  e.  ran  E )
6 prcom 3781 . . . . . . . . . 10  |-  { C ,  A }  =  { A ,  C }
76eleq1i 2421 . . . . . . . . 9  |-  ( { C ,  A }  e.  ran  E  <->  { A ,  C }  e.  ran  E )
83, 5, 73anbi123i 1140 . . . . . . . 8  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E ) )
9 3anrot 939 . . . . . . . 8  |-  ( ( { A ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E )  <->  ( { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E ) )
108, 9bitr4i 243 . . . . . . 7  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( { A ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) )
1110a1i 10 . . . . . 6  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( { A ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
121, 11biadan2 623 . . . . 5  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  /\  ( { A ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
13 an6 1261 . . . . 5  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  /\  ( { A ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) )  <-> 
( ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E )  /\  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
1412, 13bitri 240 . . . 4  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E )  /\  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
1514a1i 10 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E )  /\  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) ) )
16 nb3graprlem1 27614 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E ) )  ->  (
( <. V ,  E >. Neighbors  A )  =  { B ,  C }  <->  ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E ) ) )
17 3anrot 939 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  <->  ( B  e.  Y  /\  C  e.  Z  /\  A  e.  X )
)
1817biimpi 186 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( B  e.  Y  /\  C  e.  Z  /\  A  e.  X
) )
19 tprot 3798 . . . . . . . . 9  |-  { A ,  B ,  C }  =  { B ,  C ,  A }
2019eqeq2i 2368 . . . . . . . 8  |-  ( V  =  { A ,  B ,  C }  <->  V  =  { B ,  C ,  A }
)
2120biimpi 186 . . . . . . 7  |-  ( V  =  { A ,  B ,  C }  ->  V  =  { B ,  C ,  A }
)
2221anim1i 551 . . . . . 6  |-  ( ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  -> 
( V  =  { B ,  C ,  A }  /\  V USGrph  E
) )
23 nb3graprlem1 27614 . . . . . 6  |-  ( ( ( B  e.  Y  /\  C  e.  Z  /\  A  e.  X
)  /\  ( V  =  { B ,  C ,  A }  /\  V USGrph  E ) )  ->  (
( <. V ,  E >. Neighbors  B )  =  { C ,  A }  <->  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E ) ) )
2418, 22, 23syl2an 463 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E ) )  ->  (
( <. V ,  E >. Neighbors  B )  =  { C ,  A }  <->  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E ) ) )
25 3anrot 939 . . . . . . 7  |-  ( ( C  e.  Z  /\  A  e.  X  /\  B  e.  Y )  <->  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )
)
2625biimpri 197 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( C  e.  Z  /\  A  e.  X  /\  B  e.  Y
) )
27 tprot 3798 . . . . . . . . . 10  |-  { C ,  A ,  B }  =  { A ,  B ,  C }
2827eqcomi 2362 . . . . . . . . 9  |-  { A ,  B ,  C }  =  { C ,  A ,  B }
2928eqeq2i 2368 . . . . . . . 8  |-  ( V  =  { A ,  B ,  C }  <->  V  =  { C ,  A ,  B }
)
3029biimpi 186 . . . . . . 7  |-  ( V  =  { A ,  B ,  C }  ->  V  =  { C ,  A ,  B }
)
3130anim1i 551 . . . . . 6  |-  ( ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  -> 
( V  =  { C ,  A ,  B }  /\  V USGrph  E
) )
32 nb3graprlem1 27614 . . . . . 6  |-  ( ( ( C  e.  Z  /\  A  e.  X  /\  B  e.  Y
)  /\  ( V  =  { C ,  A ,  B }  /\  V USGrph  E ) )  ->  (
( <. V ,  E >. Neighbors  C )  =  { A ,  B }  <->  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
3326, 31, 32syl2an 463 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E ) )  ->  (
( <. V ,  E >. Neighbors  C )  =  { A ,  B }  <->  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
3416, 24, 333anbi123d 1252 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E ) )  ->  (
( ( <. V ,  E >. Neighbors  A )  =  { B ,  C }  /\  ( <. V ,  E >. Neighbors  B )  =  { C ,  A }  /\  ( <. V ,  E >. Neighbors  C )  =  { A ,  B }
)  <->  ( ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E )  /\  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) ) )
35343adant3 975 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( ( <. V ,  E >. Neighbors  A
)  =  { B ,  C }  /\  ( <. V ,  E >. Neighbors  B
)  =  { C ,  A }  /\  ( <. V ,  E >. Neighbors  C
)  =  { A ,  B } )  <->  ( ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E )  /\  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) ) )
36 nb3graprlem2 27615 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( <. V ,  E >. Neighbors  A )  =  { B ,  C }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  A )  =  {
y ,  z } ) )
3720anbi1i 676 . . . . 5  |-  ( ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  <->  ( V  =  { B ,  C ,  A }  /\  V USGrph  E ) )
38 necom 2602 . . . . . . 7  |-  ( A  =/=  B  <->  B  =/=  A )
39 necom 2602 . . . . . . 7  |-  ( A  =/=  C  <->  C  =/=  A )
40 biid 227 . . . . . . 7  |-  ( B  =/=  C  <->  B  =/=  C )
4138, 39, 403anbi123i 1140 . . . . . 6  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  <->  ( B  =/=  A  /\  C  =/= 
A  /\  B  =/=  C ) )
42 3anrot 939 . . . . . 6  |-  ( ( B  =/=  C  /\  B  =/=  A  /\  C  =/=  A )  <->  ( B  =/=  A  /\  C  =/= 
A  /\  B  =/=  C ) )
4341, 42bitr4i 243 . . . . 5  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  <->  ( B  =/=  C  /\  B  =/= 
A  /\  C  =/=  A ) )
44 nb3graprlem2 27615 . . . . 5  |-  ( ( ( B  e.  Y  /\  C  e.  Z  /\  A  e.  X
)  /\  ( V  =  { B ,  C ,  A }  /\  V USGrph  E )  /\  ( B  =/=  C  /\  B  =/=  A  /\  C  =/= 
A ) )  -> 
( ( <. V ,  E >. Neighbors  B )  =  { C ,  A }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  B )  =  {
y ,  z } ) )
4517, 37, 43, 44syl3anb 1225 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( <. V ,  E >. Neighbors  B )  =  { C ,  A }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  B )  =  {
y ,  z } ) )
46 id 19 . . . . . . 7  |-  ( V  =  { A ,  B ,  C }  ->  V  =  { A ,  B ,  C }
)
4746, 28syl6eq 2406 . . . . . 6  |-  ( V  =  { A ,  B ,  C }  ->  V  =  { C ,  A ,  B }
)
4847anim1i 551 . . . . 5  |-  ( ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  -> 
( V  =  { C ,  A ,  B }  /\  V USGrph  E
) )
49 3anrot 939 . . . . . . 7  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  <->  ( A  =/=  C  /\  B  =/= 
C  /\  A  =/=  B ) )
50 necom 2602 . . . . . . . 8  |-  ( B  =/=  C  <->  C  =/=  B )
51 biid 227 . . . . . . . 8  |-  ( A  =/=  B  <->  A  =/=  B )
5239, 50, 513anbi123i 1140 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C  /\  A  =/=  B )  <->  ( C  =/=  A  /\  C  =/= 
B  /\  A  =/=  B ) )
5349, 52bitri 240 . . . . . 6  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  <->  ( C  =/=  A  /\  C  =/= 
B  /\  A  =/=  B ) )
5453biimpi 186 . . . . 5  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( C  =/=  A  /\  C  =/=  B  /\  A  =/= 
B ) )
55 nb3graprlem2 27615 . . . . 5  |-  ( ( ( C  e.  Z  /\  A  e.  X  /\  B  e.  Y
)  /\  ( V  =  { C ,  A ,  B }  /\  V USGrph  E )  /\  ( C  =/=  A  /\  C  =/=  B  /\  A  =/= 
B ) )  -> 
( ( <. V ,  E >. Neighbors  C )  =  { A ,  B }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) )
5626, 48, 54, 55syl3an 1224 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( <. V ,  E >. Neighbors  C )  =  { A ,  B }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) )
5736, 45, 563anbi123d 1252 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( ( <. V ,  E >. Neighbors  A
)  =  { B ,  C }  /\  ( <. V ,  E >. Neighbors  B
)  =  { C ,  A }  /\  ( <. V ,  E >. Neighbors  C
)  =  { A ,  B } )  <->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  A )  =  {
y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  B
)  =  { y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) ) )
5815, 35, 573bitr2d 272 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  A
)  =  { y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  B )  =  {
y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  C
)  =  { y ,  z } ) ) )
59 oveq2 5953 . . . . . 6  |-  ( x  =  A  ->  ( <. V ,  E >. Neighbors  x
)  =  ( <. V ,  E >. Neighbors  A
) )
6059eqeq1d 2366 . . . . 5  |-  ( x  =  A  ->  (
( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <-> 
( <. V ,  E >. Neighbors  A )  =  {
y ,  z } ) )
61602rexbidv 2662 . . . 4  |-  ( x  =  A  ->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  A )  =  {
y ,  z } ) )
62 oveq2 5953 . . . . . 6  |-  ( x  =  B  ->  ( <. V ,  E >. Neighbors  x
)  =  ( <. V ,  E >. Neighbors  B
) )
6362eqeq1d 2366 . . . . 5  |-  ( x  =  B  ->  (
( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <-> 
( <. V ,  E >. Neighbors  B )  =  {
y ,  z } ) )
64632rexbidv 2662 . . . 4  |-  ( x  =  B  ->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  B )  =  {
y ,  z } ) )
65 oveq2 5953 . . . . . 6  |-  ( x  =  C  ->  ( <. V ,  E >. Neighbors  x
)  =  ( <. V ,  E >. Neighbors  C
) )
6665eqeq1d 2366 . . . . 5  |-  ( x  =  C  ->  (
( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <-> 
( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) )
67662rexbidv 2662 . . . 4  |-  ( x  =  C  ->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) )
6861, 64, 67raltpg 3760 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( A. x  e. 
{ A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  A )  =  {
y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  B
)  =  { y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) ) )
69683ad2ant1 976 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( A. x  e. 
{ A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  A )  =  {
y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  B
)  =  { y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) ) )
70 raleq 2812 . . . . 5  |-  ( V  =  { A ,  B ,  C }  ->  ( A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  A. x  e.  { A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z } ) )
7170bicomd 192 . . . 4  |-  ( V  =  { A ,  B ,  C }  ->  ( A. x  e. 
{ A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z } ) )
7271adantr 451 . . 3  |-  ( ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  -> 
( A. x  e. 
{ A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z } ) )
73723ad2ant2 977 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( A. x  e. 
{ A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z } ) )
7458, 69, 733bitr2d 272 1  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  x )  =  {
y ,  z } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619   E.wrex 2620    \ cdif 3225   {csn 3716   {cpr 3717   {ctp 3718   <.cop 3719   class class class wbr 4104   ran crn 4772  (class class class)co 5945   USGrph cusg 27520   Neighbors cnbgra 27584
This theorem is referenced by:  cusgra3vnbpr  27628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-card 7662  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-n0 10058  df-z 10117  df-uz 10323  df-fz 10875  df-hash 11431  df-usgra 27522  df-nbgra 27587
  Copyright terms: Public domain W3C validator