MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncanth Unicode version

Theorem ncanth 6261
Description: Cantor's theorem fails for the universal class (which is not a set but a proper class by vprc 4126). Specifically, the identity function maps the universe onto its power class. Compare canth 6260 that works for sets. See also the remark in ru 2965 about NF, in which Cantor's theorem fails for sets that are "too large." This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
ncanth  |-  _I  : _V -onto-> ~P _V

Proof of Theorem ncanth
StepHypRef Expression
1 f1ovi 5450 . . 3  |-  _I  : _V
-1-1-onto-> _V
2 pwv 3800 . . . 4  |-  ~P _V  =  _V
3 f1oeq3 5403 . . . 4  |-  ( ~P _V  =  _V  ->  (  _I  : _V -1-1-onto-> ~P _V  <->  _I  : _V -1-1-onto-> _V ) )
42, 3ax-mp 10 . . 3  |-  (  _I  : _V -1-1-onto-> ~P _V  <->  _I  : _V -1-1-onto-> _V )
51, 4mpbir 202 . 2  |-  _I  : _V
-1-1-onto-> ~P _V
6 f1ofo 5417 . 2  |-  (  _I  : _V -1-1-onto-> ~P _V  ->  _I  : _V -onto-> ~P _V )
75, 6ax-mp 10 1  |-  _I  : _V -onto-> ~P _V
Colors of variables: wff set class
Syntax hints:    <-> wb 178    = wceq 1619   _Vcvv 2763   ~Pcpw 3599    _I cid 4276   -onto->wfo 4671   -1-1-onto->wf1o 4672
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-opab 4052  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688
  Copyright terms: Public domain W3C validator