MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncanth Unicode version

Theorem ncanth 6476
Description: Cantor's theorem fails for the universal class (which is not a set but a proper class by vprc 4282). Specifically, the identity function maps the universe onto its power class. Compare canth 6475 that works for sets. See also the remark in ru 3103 about NF, in which Cantor's theorem fails for sets that are "too large." This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
ncanth  |-  _I  : _V -onto-> ~P _V

Proof of Theorem ncanth
StepHypRef Expression
1 f1ovi 5654 . . 3  |-  _I  : _V
-1-1-onto-> _V
2 pwv 3956 . . . 4  |-  ~P _V  =  _V
3 f1oeq3 5607 . . . 4  |-  ( ~P _V  =  _V  ->  (  _I  : _V -1-1-onto-> ~P _V  <->  _I  : _V -1-1-onto-> _V ) )
42, 3ax-mp 8 . . 3  |-  (  _I  : _V -1-1-onto-> ~P _V  <->  _I  : _V -1-1-onto-> _V )
51, 4mpbir 201 . 2  |-  _I  : _V
-1-1-onto-> ~P _V
6 f1ofo 5621 . 2  |-  (  _I  : _V -1-1-onto-> ~P _V  ->  _I  : _V -onto-> ~P _V )
75, 6ax-mp 8 1  |-  _I  : _V -onto-> ~P _V
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1649   _Vcvv 2899   ~Pcpw 3742    _I cid 4434   -onto->wfo 5392   -1-1-onto->wf1o 5393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-br 4154  df-opab 4208  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401
  Copyright terms: Public domain W3C validator