MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negeu Unicode version

Theorem negeu 9228
Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negeu  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem negeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnegex 9179 . . 3  |-  ( A  e.  CC  ->  E. y  e.  CC  ( A  +  y )  =  0 )
21adantr 452 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. y  e.  CC  ( A  +  y
)  =  0 )
3 simpl 444 . . . 4  |-  ( ( y  e.  CC  /\  ( A  +  y
)  =  0 )  ->  y  e.  CC )
4 simpr 448 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
5 addcl 9005 . . . 4  |-  ( ( y  e.  CC  /\  B  e.  CC )  ->  ( y  +  B
)  e.  CC )
63, 4, 5syl2anr 465 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( A  +  y )  =  0 ) )  -> 
( y  +  B
)  e.  CC )
7 simplrr 738 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  ( A  +  y )  =  0 )
87oveq1d 6035 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  y )  +  B )  =  ( 0  +  B ) )
9 simplll 735 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  A  e.  CC )
10 simplrl 737 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  y  e.  CC )
11 simpllr 736 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  B  e.  CC )
129, 10, 11addassd 9043 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  y )  +  B )  =  ( A  +  ( y  +  B
) ) )
1311addid2d 9199 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
0  +  B )  =  B )
148, 12, 133eqtr3rd 2428 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  B  =  ( A  +  ( y  +  B
) ) )
1514eqeq2d 2398 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  B  <->  ( A  +  x )  =  ( A  +  ( y  +  B ) ) ) )
16 simpr 448 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  x  e.  CC )
1710, 11addcld 9040 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
y  +  B )  e.  CC )
189, 16, 17addcand 9201 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  ( A  +  ( y  +  B ) )  <->  x  =  ( y  +  B
) ) )
1915, 18bitrd 245 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  B  <->  x  =  ( y  +  B
) ) )
2019ralrimiva 2732 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( A  +  y )  =  0 ) )  ->  A. x  e.  CC  ( ( A  +  x )  =  B  <-> 
x  =  ( y  +  B ) ) )
21 reu6i 3068 . . 3  |-  ( ( ( y  +  B
)  e.  CC  /\  A. x  e.  CC  (
( A  +  x
)  =  B  <->  x  =  ( y  +  B
) ) )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
226, 20, 21syl2anc 643 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( A  +  y )  =  0 ) )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
232, 22rexlimddv 2777 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   E!wreu 2651  (class class class)co 6020   CCcc 8921   0cc0 8923    + caddc 8926
This theorem is referenced by:  subcl  9237  subadd  9240  addinv  21788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-ltxr 9058
  Copyright terms: Public domain W3C validator