MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neifil Structured version   Unicode version

Theorem neifil 17904
Description: The neighborhoods of a non-empty set is a filter. Example 2 of [BourbakiTop1] p. I.36. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
neifil  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( nei `  J ) `
 S )  e.  ( Fil `  X
) )

Proof of Theorem neifil
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toponuni 16984 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
21adantr 452 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  X  =  U. J )
3 topontop 16983 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
43adantr 452 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  J  e.  Top )
5 simpr 448 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  S  C_  X )
65, 2sseqtrd 3376 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  S  C_ 
U. J )
7 eqid 2435 . . . . . . . . 9  |-  U. J  =  U. J
87neiuni 17178 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  U. J  =  U. ( ( nei `  J
) `  S )
)
94, 6, 8syl2anc 643 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  U. J  =  U. ( ( nei `  J ) `  S
) )
102, 9eqtrd 2467 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  X  =  U. ( ( nei `  J ) `  S
) )
11 eqimss2 3393 . . . . . 6  |-  ( X  =  U. ( ( nei `  J ) `
 S )  ->  U. ( ( nei `  J
) `  S )  C_  X )
1210, 11syl 16 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  U. (
( nei `  J
) `  S )  C_  X )
13 sspwuni 4168 . . . . 5  |-  ( ( ( nei `  J
) `  S )  C_ 
~P X  <->  U. (
( nei `  J
) `  S )  C_  X )
1412, 13sylibr 204 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  (
( nei `  J
) `  S )  C_ 
~P X )
15143adant3 977 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( nei `  J ) `
 S )  C_  ~P X )
16 0nnei 17168 . . . . 5  |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )
173, 16sylan 458 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )
18173adant2 976 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  -.  (/)  e.  ( ( nei `  J
) `  S )
)
197tpnei 17177 . . . . . . 7  |-  ( J  e.  Top  ->  ( S  C_  U. J  <->  U. J  e.  ( ( nei `  J
) `  S )
) )
2019biimpa 471 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  U. J  e.  ( ( nei `  J
) `  S )
)
214, 6, 20syl2anc 643 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  U. J  e.  ( ( nei `  J
) `  S )
)
222, 21eqeltrd 2509 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  X  e.  ( ( nei `  J
) `  S )
)
23223adant3 977 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  X  e.  ( ( nei `  J
) `  S )
)
2415, 18, 233jca 1134 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( ( nei `  J
) `  S )  C_ 
~P X  /\  -.  (/) 
e.  ( ( nei `  J ) `  S
)  /\  X  e.  ( ( nei `  J
) `  S )
) )
25 elpwi 3799 . . . . 5  |-  ( x  e.  ~P X  ->  x  C_  X )
264ad2antrr 707 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  J  e.  Top )
27 simprl 733 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  y  e.  ( ( nei `  J
) `  S )
)
28 simprr 734 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  y  C_  x )
29 simplr 732 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  x  C_  X
)
302ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  X  =  U. J )
3129, 30sseqtrd 3376 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  x  C_  U. J
)
327ssnei2 17172 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  e.  ( ( nei `  J ) `
 S ) )  /\  ( y  C_  x  /\  x  C_  U. J
) )  ->  x  e.  ( ( nei `  J
) `  S )
)
3326, 27, 28, 31, 32syl22anc 1185 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
3433rexlimdvaa 2823 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X )  ->  ( E. y  e.  (
( nei `  J
) `  S )
y  C_  x  ->  x  e.  ( ( nei `  J ) `  S
) ) )
3525, 34sylan2 461 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  e.  ~P X )  -> 
( E. y  e.  ( ( nei `  J
) `  S )
y  C_  x  ->  x  e.  ( ( nei `  J ) `  S
) ) )
3635ralrimiva 2781 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  A. x  e.  ~P  X ( E. y  e.  ( ( nei `  J ) `
 S ) y 
C_  x  ->  x  e.  ( ( nei `  J
) `  S )
) )
37363adant3 977 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  A. x  e.  ~P  X ( E. y  e.  ( ( nei `  J ) `
 S ) y 
C_  x  ->  x  e.  ( ( nei `  J
) `  S )
) )
38 innei 17181 . . . . . 6  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S )  /\  y  e.  ( ( nei `  J
) `  S )
)  ->  ( x  i^i  y )  e.  ( ( nei `  J
) `  S )
)
39383expib 1156 . . . . 5  |-  ( J  e.  Top  ->  (
( x  e.  ( ( nei `  J
) `  S )  /\  y  e.  (
( nei `  J
) `  S )
)  ->  ( x  i^i  y )  e.  ( ( nei `  J
) `  S )
) )
403, 39syl 16 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( (
x  e.  ( ( nei `  J ) `
 S )  /\  y  e.  ( ( nei `  J ) `  S ) )  -> 
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) ) )
41403ad2ant1 978 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( x  e.  ( ( nei `  J ) `
 S )  /\  y  e.  ( ( nei `  J ) `  S ) )  -> 
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) ) )
4241ralrimivv 2789 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  A. x  e.  ( ( nei `  J
) `  S ) A. y  e.  (
( nei `  J
) `  S )
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) )
43 isfil2 17880 . 2  |-  ( ( ( nei `  J
) `  S )  e.  ( Fil `  X
)  <->  ( ( ( ( nei `  J
) `  S )  C_ 
~P X  /\  -.  (/) 
e.  ( ( nei `  J ) `  S
)  /\  X  e.  ( ( nei `  J
) `  S )
)  /\  A. x  e.  ~P  X ( E. y  e.  ( ( nei `  J ) `
 S ) y 
C_  x  ->  x  e.  ( ( nei `  J
) `  S )
)  /\  A. x  e.  ( ( nei `  J
) `  S ) A. y  e.  (
( nei `  J
) `  S )
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) ) )
4424, 37, 42, 43syl3anbrc 1138 1  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( nei `  J ) `
 S )  e.  ( Fil `  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    i^i cin 3311    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   U.cuni 4007   ` cfv 5446   Topctop 16950  TopOnctopon 16951   neicnei 17153   Filcfil 17869
This theorem is referenced by:  trnei  17916  neiflim  17998  hausflim  18005  flimcf  18006  flimclslem  18008  cnpflf2  18024  cnpflf  18025  fclsfnflim  18051  neipcfilu  18318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-fbas 16691  df-top 16955  df-topon 16958  df-nei 17154  df-fil 17870
  Copyright terms: Public domain W3C validator