MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj Unicode version

Theorem neindisj 17169
Description: Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
neindisj  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( P  e.  ( ( cls `  J
) `  S )  /\  N  e.  (
( nei `  J
) `  { P } ) ) )  ->  ( N  i^i  S )  =/=  (/) )

Proof of Theorem neindisj
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . . 8  |-  X  = 
U. J
21clsss3 17111 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
32sseld 3339 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( cls `  J
) `  S )  ->  P  e.  X ) )
43impr 603 . . . . 5  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J ) `  S ) ) )  ->  P  e.  X
)
51isneip 17157 . . . . 5  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) ) ) )
64, 5syldan 457 . . . 4  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J ) `  S ) ) )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) ) ) )
7 3anass 940 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  <->  ( J  e. 
Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
) ) )
81clsndisj 17127 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J ) `  S ) )  /\  ( g  e.  J  /\  P  e.  g
) )  ->  (
g  i^i  S )  =/=  (/) )
97, 8sylanbr 460 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  ( S  C_  X  /\  P  e.  (
( cls `  J
) `  S )
) )  /\  (
g  e.  J  /\  P  e.  g )
)  ->  ( g  i^i  S )  =/=  (/) )
109anassrs 630 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
) )  /\  g  e.  J )  /\  P  e.  g )  ->  (
g  i^i  S )  =/=  (/) )
1110adantllr 700 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
) )  /\  N  C_  X )  /\  g  e.  J )  /\  P  e.  g )  ->  (
g  i^i  S )  =/=  (/) )
1211adantrr 698 . . . . . . . 8  |-  ( ( ( ( ( J  e.  Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
) )  /\  N  C_  X )  /\  g  e.  J )  /\  ( P  e.  g  /\  g  C_  N ) )  ->  ( g  i^i 
S )  =/=  (/) )
13 ssdisj 3669 . . . . . . . . . . 11  |-  ( ( g  C_  N  /\  ( N  i^i  S )  =  (/) )  ->  (
g  i^i  S )  =  (/) )
1413ex 424 . . . . . . . . . 10  |-  ( g 
C_  N  ->  (
( N  i^i  S
)  =  (/)  ->  (
g  i^i  S )  =  (/) ) )
1514necon3d 2636 . . . . . . . . 9  |-  ( g 
C_  N  ->  (
( g  i^i  S
)  =/=  (/)  ->  ( N  i^i  S )  =/=  (/) ) )
1615ad2antll 710 . . . . . . . 8  |-  ( ( ( ( ( J  e.  Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
) )  /\  N  C_  X )  /\  g  e.  J )  /\  ( P  e.  g  /\  g  C_  N ) )  ->  ( ( g  i^i  S )  =/=  (/)  ->  ( N  i^i  S )  =/=  (/) ) )
1712, 16mpd 15 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
) )  /\  N  C_  X )  /\  g  e.  J )  /\  ( P  e.  g  /\  g  C_  N ) )  ->  ( N  i^i  S )  =/=  (/) )
1817ex 424 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
) )  /\  N  C_  X )  /\  g  e.  J )  ->  (
( P  e.  g  /\  g  C_  N
)  ->  ( N  i^i  S )  =/=  (/) ) )
1918rexlimdva 2822 . . . . 5  |-  ( ( ( J  e.  Top  /\  ( S  C_  X  /\  P  e.  (
( cls `  J
) `  S )
) )  /\  N  C_  X )  ->  ( E. g  e.  J  ( P  e.  g  /\  g  C_  N )  ->  ( N  i^i  S )  =/=  (/) ) )
2019expimpd 587 . . . 4  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J ) `  S ) ) )  ->  ( ( N 
C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) )  ->  ( N  i^i  S )  =/=  (/) ) )
216, 20sylbid 207 . . 3  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  P  e.  ( ( cls `  J ) `  S ) ) )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  ->  ( N  i^i  S )  =/=  (/) ) )
2221exp32 589 . 2  |-  ( J  e.  Top  ->  ( S  C_  X  ->  ( P  e.  ( ( cls `  J ) `  S )  ->  ( N  e.  ( ( nei `  J ) `  { P } )  -> 
( N  i^i  S
)  =/=  (/) ) ) ) )
2322imp43 579 1  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( P  e.  ( ( cls `  J
) `  S )  /\  N  e.  (
( nei `  J
) `  { P } ) ) )  ->  ( N  i^i  S )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698    i^i cin 3311    C_ wss 3312   (/)c0 3620   {csn 3806   U.cuni 4007   ` cfv 5445   Topctop 16946   clsccl 17070   neicnei 17149
This theorem is referenced by:  clslp  17200  flimclslem  18004  utop3cls  18269
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-top 16951  df-cld 17071  df-ntr 17072  df-cls 17073  df-nei 17150
  Copyright terms: Public domain W3C validator