MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neips Unicode version

Theorem neips 17093
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
neips  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
Distinct variable groups:    J, p    N, p    S, p    X, p

Proof of Theorem neips
Dummy variables  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 3878 . . . . . 6  |-  ( p  e.  S  ->  { p }  C_  S )
2 neiss 17089 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  {
p }  C_  S
)  ->  N  e.  ( ( nei `  J
) `  { p } ) )
31, 2syl3an3 1219 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  p  e.  S )  ->  N  e.  ( ( nei `  J
) `  { p } ) )
433exp 1152 . . . 4  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  (
p  e.  S  ->  N  e.  ( ( nei `  J ) `  { p } ) ) ) )
54ralrimdv 2731 . . 3  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
653ad2ant1 978 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
7 r19.28zv 3659 . . . . 5  |-  ( S  =/=  (/)  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  (
p  e.  g  /\  g  C_  N ) )  <-> 
( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
873ad2ant3 980 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  <-> 
( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
9 ssrab2 3364 . . . . . . . . . 10  |-  { v  e.  J  |  v 
C_  N }  C_  J
10 uniopn 16886 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  { v  e.  J  | 
v  C_  N }  C_  J )  ->  U. {
v  e.  J  | 
v  C_  N }  e.  J )
119, 10mpan2 653 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. {
v  e.  J  | 
v  C_  N }  e.  J )
1211ad2antrr 707 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  U. { v  e.  J  |  v 
C_  N }  e.  J )
13 sseq1 3305 . . . . . . . . . . . . . . . 16  |-  ( v  =  g  ->  (
v  C_  N  <->  g  C_  N ) )
1413elrab 3028 . . . . . . . . . . . . . . 15  |-  ( g  e.  { v  e.  J  |  v  C_  N }  <->  ( g  e.  J  /\  g  C_  N ) )
15 elunii 3955 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  g  /\  g  e.  { v  e.  J  |  v  C_  N } )  ->  p  e.  U. { v  e.  J  |  v 
C_  N } )
1614, 15sylan2br 463 . . . . . . . . . . . . . 14  |-  ( ( p  e.  g  /\  ( g  e.  J  /\  g  C_  N ) )  ->  p  e.  U. { v  e.  J  |  v  C_  N }
)
1716an12s 777 . . . . . . . . . . . . 13  |-  ( ( g  e.  J  /\  ( p  e.  g  /\  g  C_  N ) )  ->  p  e.  U. { v  e.  J  |  v  C_  N }
)
1817rexlimiva 2761 . . . . . . . . . . . 12  |-  ( E. g  e.  J  ( p  e.  g  /\  g  C_  N )  ->  p  e.  U. { v  e.  J  |  v 
C_  N } )
1918ralimi 2717 . . . . . . . . . . 11  |-  ( A. p  e.  S  E. g  e.  J  (
p  e.  g  /\  g  C_  N )  ->  A. p  e.  S  p  e.  U. { v  e.  J  |  v 
C_  N } )
20 dfss3 3274 . . . . . . . . . . 11  |-  ( S 
C_  U. { v  e.  J  |  v  C_  N }  <->  A. p  e.  S  p  e.  U. { v  e.  J  |  v 
C_  N } )
2119, 20sylibr 204 . . . . . . . . . 10  |-  ( A. p  e.  S  E. g  e.  J  (
p  e.  g  /\  g  C_  N )  ->  S  C_  U. { v  e.  J  |  v 
C_  N } )
2221adantl 453 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  S  C_  U. {
v  e.  J  | 
v  C_  N }
)
23 unissb 3980 . . . . . . . . . 10  |-  ( U. { v  e.  J  |  v  C_  N }  C_  N  <->  A. h  e.  {
v  e.  J  | 
v  C_  N }
h  C_  N )
24 sseq1 3305 . . . . . . . . . . . 12  |-  ( v  =  h  ->  (
v  C_  N  <->  h  C_  N
) )
2524elrab 3028 . . . . . . . . . . 11  |-  ( h  e.  { v  e.  J  |  v  C_  N }  <->  ( h  e.  J  /\  h  C_  N ) )
2625simprbi 451 . . . . . . . . . 10  |-  ( h  e.  { v  e.  J  |  v  C_  N }  ->  h  C_  N )
2723, 26mprgbir 2712 . . . . . . . . 9  |-  U. {
v  e.  J  | 
v  C_  N }  C_  N
2822, 27jctir 525 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  ( S  C_ 
U. { v  e.  J  |  v  C_  N }  /\  U. {
v  e.  J  | 
v  C_  N }  C_  N ) )
29 sseq2 3306 . . . . . . . . . 10  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( S  C_  h  <->  S  C_  U. {
v  e.  J  | 
v  C_  N }
) )
30 sseq1 3305 . . . . . . . . . 10  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( h  C_  N  <->  U. { v  e.  J  |  v 
C_  N }  C_  N ) )
3129, 30anbi12d 692 . . . . . . . . 9  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( ( S  C_  h  /\  h  C_  N )  <-> 
( S  C_  U. {
v  e.  J  | 
v  C_  N }  /\  U. { v  e.  J  |  v  C_  N }  C_  N ) ) )
3231rspcev 2988 . . . . . . . 8  |-  ( ( U. { v  e.  J  |  v  C_  N }  e.  J  /\  ( S  C_  U. {
v  e.  J  | 
v  C_  N }  /\  U. { v  e.  J  |  v  C_  N }  C_  N ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
3312, 28, 32syl2anc 643 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
3433ex 424 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) )
3534anim2d 549 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  -> 
( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
36353adant3 977 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
378, 36sylbid 207 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N
) ) ) )
38 ssel2 3279 . . . . . . 7  |-  ( ( S  C_  X  /\  p  e.  S )  ->  p  e.  X )
39 neips.1 . . . . . . . 8  |-  X  = 
U. J
4039isneip 17085 . . . . . . 7  |-  ( ( J  e.  Top  /\  p  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4138, 40sylan2 461 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  p  e.  S )
)  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4241anassrs 630 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  p  e.  S
)  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4342ralbidva 2658 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } )  <->  A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
44433adant3 977 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  N  e.  ( ( nei `  J ) `  { p } )  <->  A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4539isnei 17083 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
46453adant3 977 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
4737, 44, 463imtr4d 260 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  N  e.  ( ( nei `  J ) `  { p } )  ->  N  e.  ( ( nei `  J
) `  S )
) )
486, 47impbid 184 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   E.wrex 2643   {crab 2646    C_ wss 3256   (/)c0 3564   {csn 3750   U.cuni 3950   ` cfv 5387   Topctop 16874   neicnei 17077
This theorem is referenced by:  utop2nei  18194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-top 16879  df-nei 17078
  Copyright terms: Public domain W3C validator