MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiss Unicode version

Theorem neiss 16840
Description: Any neighborhood of a set  S is also a neighborhood of any subset  R  C_  S. Theorem of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
Assertion
Ref Expression
neiss  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  e.  ( ( nei `  J
) `  R )
)

Proof of Theorem neiss
StepHypRef Expression
1 eqid 2284 . . . 4  |-  U. J  =  U. J
21neii1 16837 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
323adant3 980 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  C_ 
U. J )
4 neii2 16839 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
543adant3 980 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
6 sstr2 3187 . . . . . 6  |-  ( R 
C_  S  ->  ( S  C_  g  ->  R  C_  g ) )
76anim1d 549 . . . . 5  |-  ( R 
C_  S  ->  (
( S  C_  g  /\  g  C_  N )  ->  ( R  C_  g  /\  g  C_  N
) ) )
87reximdv 2655 . . . 4  |-  ( R 
C_  S  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  N )  ->  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) )
983ad2ant3 983 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  N )  ->  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) )
105, 9mpd 16 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) )
11 simp1 960 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  J  e.  Top )
12 simp3 962 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  R  C_  S )
131neiss2 16832 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
14133adant3 980 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  S  C_ 
U. J )
1512, 14sstrd 3190 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  R  C_ 
U. J )
161isnei 16834 . . 3  |-  ( ( J  e.  Top  /\  R  C_  U. J )  ->  ( N  e.  ( ( nei `  J
) `  R )  <->  ( N  C_  U. J  /\  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) ) )
1711, 15, 16syl2anc 645 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  ( N  e.  ( ( nei `  J ) `  R )  <->  ( N  C_ 
U. J  /\  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) ) )
183, 10, 17mpbir2and 893 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  e.  ( ( nei `  J
) `  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    e. wcel 1688   E.wrex 2545    C_ wss 3153   U.cuni 3828   ` cfv 5221   Topctop 16625   neicnei 16828
This theorem is referenced by:  neips  16844  neissex  16858
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-top 16630  df-nei 16829
  Copyright terms: Public domain W3C validator