MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nemtbir Unicode version

Theorem nemtbir 2639
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
Hypotheses
Ref Expression
nemtbir.1  |-  A  =/= 
B
nemtbir.2  |-  ( ph  <->  A  =  B )
Assertion
Ref Expression
nemtbir  |-  -.  ph

Proof of Theorem nemtbir
StepHypRef Expression
1 nemtbir.1 . . 3  |-  A  =/= 
B
2 df-ne 2553 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
31, 2mpbi 200 . 2  |-  -.  A  =  B
4 nemtbir.2 . 2  |-  ( ph  <->  A  =  B )
53, 4mtbir 291 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    = wceq 1649    =/= wne 2551
This theorem is referenced by:  opthwiener  4400  opthprc  4866  cfpwsdom  8393  gzrngunitlem  16687  ex-id  21591  sltval2  25335  sltsolem1  25347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-ne 2553
  Copyright terms: Public domain W3C validator