MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nemtbir Structured version   Unicode version

Theorem nemtbir 2699
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
Hypotheses
Ref Expression
nemtbir.1  |-  A  =/= 
B
nemtbir.2  |-  ( ph  <->  A  =  B )
Assertion
Ref Expression
nemtbir  |-  -.  ph

Proof of Theorem nemtbir
StepHypRef Expression
1 nemtbir.1 . . 3  |-  A  =/= 
B
21neii 2610 . 2  |-  -.  A  =  B
3 nemtbir.2 . 2  |-  ( ph  <->  A  =  B )
42, 3mtbir 292 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 178    = wceq 1654    =/= wne 2606
This theorem is referenced by:  opthwiener  4493  opthprc  4960  cfpwsdom  8497  gzrngunitlem  16801  ex-id  21780  sltval2  25646  sltsolem1  25658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-ne 2608
  Copyright terms: Public domain W3C validator