MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbi Unicode version

Theorem nfbi 1856
Description: If  x is not free in  ph and  ps, it is not free in  ( ph  <->  ps ). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Hypotheses
Ref Expression
nf.1  |-  F/ x ph
nf.2  |-  F/ x ps
Assertion
Ref Expression
nfbi  |-  F/ x
( ph  <->  ps )

Proof of Theorem nfbi
StepHypRef Expression
1 nf.1 . . . 4  |-  F/ x ph
21a1i 11 . . 3  |-  (  T. 
->  F/ x ph )
3 nf.2 . . . 4  |-  F/ x ps
43a1i 11 . . 3  |-  (  T. 
->  F/ x ps )
52, 4nfbid 1854 . 2  |-  (  T. 
->  F/ x ( ph  <->  ps ) )
65trud 1332 1  |-  F/ x
( ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    T. wtru 1325   F/wnf 1553
This theorem is referenced by:  euf  2286  sb8eu  2298  bm1.1  2420  abbi  2545  nfeq  2578  cleqf  2595  sbhypf  2993  ceqsexg  3059  elabgt  3071  elabgf  3072  axrep1  4313  axrep3  4315  axrep4  4316  copsex2t  4435  copsex2g  4436  opelopabsb  4457  opeliunxp2  5004  ralxpf  5010  cbviota  5414  sb8iota  5416  fmptco  5892  nfiso  6035  dfoprab4f  6396  fvopab5  6525  xpf1o  7260  zfcndrep  8478  uzindOLD  10353  gsumcom2  15537  isfildlem  17877  cnextfvval  18084  mbfsup  19544  mbfinf  19545  fmptcof2  24064  subtr2  26255  bnj1468  29071
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554
  Copyright terms: Public domain W3C validator