Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfor Structured version   Unicode version

Theorem nfor 1860
 Description: If is not free in and , it is not free in . (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nf.1
nf.2
Assertion
Ref Expression
nfor

Proof of Theorem nfor
StepHypRef Expression
1 df-or 361 . 2
2 nf.1 . . . 4
32nfn 1813 . . 3
4 nf.2 . . 3
53, 4nfim 1834 . 2
61, 5nfxfr 1580 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wo 359  wnf 1554 This theorem is referenced by:  nf3or  1861  axi12  2421  nfun  3489  nfpr  3879  disjxun  4235  nfsum1  12515  nfsum  12516  nfcprod1  25267  nfcprod  25268  fdc1  26488  dvdsrabdioph  26908 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-11 1763 This theorem depends on definitions:  df-bi 179  df-or 361  df-tru 1329  df-ex 1552  df-nf 1555
 Copyright terms: Public domain W3C validator