MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2 Unicode version

Theorem nfra2 2572
Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 27769. Contributed by Alan Sare 31-Dec-2011. (Contributed by NM, 31-Dec-2011.)
Assertion
Ref Expression
nfra2  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Distinct variable group:    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem nfra2
StepHypRef Expression
1 nfcv 2394 . 2  |-  F/_ y A
2 nfra1 2568 . 2  |-  F/ y A. y  e.  B  ph
31, 2nfral 2571 1  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1539   A.wral 2518
This theorem is referenced by:  ralcom2  2679  invdisj  3986  reusv3  4514  mreexexd  13513  imonclem  25181  ismonc  25182  cmpmon  25183  iepiclem  25191  isepic  25192  stoweidlem60  27178  tratrb  27435
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ral 2523
  Copyright terms: Public domain W3C validator