Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2 Unicode version

Theorem nfra2 2568
 Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 27649. Contributed by Alan Sare 31-Dec-2011. (Contributed by NM, 31-Dec-2011.)
Assertion
Ref Expression
nfra2
Distinct variable group:   ,
Allowed substitution hints:   (,)   ()   (,)

Proof of Theorem nfra2
StepHypRef Expression
1 nfcv 2392 . 2
2 nfra1 2564 . 2
31, 2nfral 2567 1
 Colors of variables: wff set class Syntax hints:  wnf 1539  wral 2516 This theorem is referenced by:  ralcom2  2675  invdisj  3952  reusv3  4479  mreexexd  13477  imonclem  25145  ismonc  25146  cmpmon  25147  iepiclem  25155  isepic  25156  stoweidlem60  27109  tratrb  27315 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-ext 2237 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ral 2520
 Copyright terms: Public domain W3C validator