MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2 Unicode version

Theorem nfra2 2724
Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 28685. Contributed by Alan Sare 31-Dec-2011. (Contributed by NM, 31-Dec-2011.)
Assertion
Ref Expression
nfra2  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Distinct variable group:    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem nfra2
StepHypRef Expression
1 nfcv 2544 . 2  |-  F/_ y A
2 nfra1 2720 . 2  |-  F/ y A. y  e.  B  ph
31, 2nfral 2723 1  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1550   A.wral 2670
This theorem is referenced by:  ralcom2  2836  invdisj  4165  reusv3  4694  mreexexd  13832  dedekind  25144  dedekindle  25145  tratrb  28335  bnj1379  28912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ral 2675
  Copyright terms: Public domain W3C validator