HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelchi Unicode version

Theorem nlelchi 22566
Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1  |-  T  e. 
LinFn
nlelch.2  |-  T  e. 
ConFn
Assertion
Ref Expression
nlelchi  |-  ( null `  T )  e.  CH

Proof of Theorem nlelchi
StepHypRef Expression
1 nlelch.1 . . 3  |-  T  e. 
LinFn
21nlelshi 22565 . 2  |-  ( null `  T )  e.  SH
3 vex 2743 . . . . . 6  |-  x  e. 
_V
43hlimveci 21694 . . . . 5  |-  ( f 
~~>v  x  ->  x  e.  ~H )
54adantl 454 . . . 4  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  x  e.  ~H )
6 eqid 2256 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
76cnfldhaus 18221 . . . . . 6  |-  ( TopOpen ` fld )  e.  Haus
87a1i 12 . . . . 5  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( TopOpen
` fld
)  e.  Haus )
9 eqid 2256 . . . . . . . . . 10  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
10 eqid 2256 . . . . . . . . . . 11  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
119, 10hhims 21676 . . . . . . . . . 10  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
12 eqid 2256 . . . . . . . . . 10  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
139, 11, 12hhlm 21703 . . . . . . . . 9  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
14 resss 4932 . . . . . . . . 9  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
1513, 14eqsstri 3150 . . . . . . . 8  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
1615ssbri 4005 . . . . . . 7  |-  ( f 
~~>v  x  ->  f ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) ) x )
1716adantl 454 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  f
( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) ) x )
18 nlelch.2 . . . . . . . 8  |-  T  e. 
ConFn
1910, 12, 6hhcnf 22410 . . . . . . . 8  |-  ConFn  =  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( TopOpen ` fld ) )
2018, 19eleqtri 2328 . . . . . . 7  |-  T  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( TopOpen ` fld ) )
2120a1i 12 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  T  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( TopOpen ` fld ) ) )
2217, 21lmcn 16960 . . . . 5  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )
( ~~> t `  ( TopOpen
` fld
) ) ( T `
 x ) )
231lnfnfi 22546 . . . . . . . . . 10  |-  T : ~H
--> CC
24 ffvelrn 5562 . . . . . . . . . . 11  |-  ( ( f : NN --> ( null `  T )  /\  n  e.  NN )  ->  (
f `  n )  e.  ( null `  T
) )
2524adantlr 698 . . . . . . . . . 10  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( f `  n )  e.  (
null `  T )
)
26 elnlfn2 22434 . . . . . . . . . 10  |-  ( ( T : ~H --> CC  /\  ( f `  n
)  e.  ( null `  T ) )  -> 
( T `  (
f `  n )
)  =  0 )
2723, 25, 26sylancr 647 . . . . . . . . 9  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( T `  ( f `  n
) )  =  0 )
28 fvco3 5495 . . . . . . . . . 10  |-  ( ( f : NN --> ( null `  T )  /\  n  e.  NN )  ->  (
( T  o.  f
) `  n )  =  ( T `  ( f `  n
) ) )
2928adantlr 698 . . . . . . . . 9  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( ( T  o.  f ) `  n )  =  ( T `  ( f `
 n ) ) )
30 c0ex 8765 . . . . . . . . . . 11  |-  0  e.  _V
3130fvconst2 5628 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( NN  X.  {
0 } ) `  n )  =  0 )
3231adantl 454 . . . . . . . . 9  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( ( NN 
X.  { 0 } ) `  n )  =  0 )
3327, 29, 323eqtr4d 2298 . . . . . . . 8  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( ( T  o.  f ) `  n )  =  ( ( NN  X.  {
0 } ) `  n ) )
3433ralrimiva 2597 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  A. n  e.  NN  ( ( T  o.  f ) `  n )  =  ( ( NN  X.  {
0 } ) `  n ) )
35 ffn 5292 . . . . . . . . . 10  |-  ( T : ~H --> CC  ->  T  Fn  ~H )
3623, 35ax-mp 10 . . . . . . . . 9  |-  T  Fn  ~H
37 simpl 445 . . . . . . . . . 10  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  f : NN --> ( null `  T
) )
382shssii 21717 . . . . . . . . . 10  |-  ( null `  T )  C_  ~H
39 fss 5300 . . . . . . . . . 10  |-  ( ( f : NN --> ( null `  T )  /\  ( null `  T )  C_  ~H )  ->  f : NN --> ~H )
4037, 38, 39sylancl 646 . . . . . . . . 9  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  f : NN --> ~H )
41 fnfco 5310 . . . . . . . . 9  |-  ( ( T  Fn  ~H  /\  f : NN --> ~H )  ->  ( T  o.  f
)  Fn  NN )
4236, 40, 41sylancr 647 . . . . . . . 8  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )  Fn  NN )
4330fconst 5330 . . . . . . . . 9  |-  ( NN 
X.  { 0 } ) : NN --> { 0 }
44 ffn 5292 . . . . . . . . 9  |-  ( ( NN  X.  { 0 } ) : NN --> { 0 }  ->  ( NN  X.  { 0 } )  Fn  NN )
4543, 44ax-mp 10 . . . . . . . 8  |-  ( NN 
X.  { 0 } )  Fn  NN
46 eqfnfv 5521 . . . . . . . 8  |-  ( ( ( T  o.  f
)  Fn  NN  /\  ( NN  X.  { 0 } )  Fn  NN )  ->  ( ( T  o.  f )  =  ( NN  X.  {
0 } )  <->  A. n  e.  NN  ( ( T  o.  f ) `  n )  =  ( ( NN  X.  {
0 } ) `  n ) ) )
4742, 45, 46sylancl 646 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  (
( T  o.  f
)  =  ( NN 
X.  { 0 } )  <->  A. n  e.  NN  ( ( T  o.  f ) `  n
)  =  ( ( NN  X.  { 0 } ) `  n
) ) )
4834, 47mpbird 225 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )  =  ( NN  X.  { 0 } ) )
496cnfldtopon 18219 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
5049a1i 12 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
51 0cn 8764 . . . . . . . 8  |-  0  e.  CC
5251a1i 12 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  0  e.  CC )
53 1z 9985 . . . . . . . 8  |-  1  e.  ZZ
5453a1i 12 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  1  e.  ZZ )
55 nnuz 10195 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
5655lmconst 16918 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  0  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  { 0 } ) ( ~~> t `  ( TopOpen ` fld ) ) 0 )
5750, 52, 54, 56syl3anc 1187 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( NN  X.  { 0 } ) ( ~~> t `  ( TopOpen ` fld ) ) 0 )
5848, 57eqbrtrd 3983 . . . . 5  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )
( ~~> t `  ( TopOpen
` fld
) ) 0 )
598, 22, 58lmmo 17035 . . . 4  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T `  x )  =  0 )
60 elnlfn 22433 . . . . 5  |-  ( T : ~H --> CC  ->  ( x  e.  ( null `  T )  <->  ( x  e.  ~H  /\  ( T `
 x )  =  0 ) ) )
6123, 60ax-mp 10 . . . 4  |-  ( x  e.  ( null `  T
)  <->  ( x  e. 
~H  /\  ( T `  x )  =  0 ) )
625, 59, 61sylanbrc 648 . . 3  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  x  e.  ( null `  T
) )
6362gen2 1541 . 2  |-  A. f A. x ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  x  e.  ( null `  T
) )
64 isch2 21728 . 2  |-  ( (
null `  T )  e.  CH  <->  ( ( null `  T )  e.  SH  /\ 
A. f A. x
( ( f : NN --> ( null `  T
)  /\  f  ~~>v  x )  ->  x  e.  ( null `  T )
) ) )
652, 63, 64mpbir2an 891 1  |-  ( null `  T )  e.  CH
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621   A.wral 2516    C_ wss 3094   {csn 3581   <.cop 3584   class class class wbr 3963    X. cxp 4624    |` cres 4628    o. ccom 4630    Fn wfn 4633   -->wf 4634   ` cfv 4638  (class class class)co 5757    ^m cmap 6705   CCcc 8668   0cc0 8670   1c1 8671   NNcn 9679   ZZcz 9956   TopOpenctopn 13253   MetOpencmopn 16299  ℂfldccnfld 16304  TopOnctopon 16559    Cn ccn 16881   ~~> tclm 16883   Hauscha 16963   ~Hchil 21424    +h cva 21425    .h csm 21426   normhcno 21428    -h cmv 21430    ~~>v chli 21432   SHcsh 21433   CHcch 21434   nullcnl 21457   ConFnccnfn 21458   LinFnclf 21459
This theorem is referenced by:  riesz3i  22567
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750  ax-hilex 21504  ax-hfvadd 21505  ax-hvcom 21506  ax-hvass 21507  ax-hv0cl 21508  ax-hvaddid 21509  ax-hfvmul 21510  ax-hvmulid 21511  ax-hvmulass 21512  ax-hvdistr1 21513  ax-hvdistr2 21514  ax-hvmul0 21515  ax-hfi 21583  ax-his1 21586  ax-his2 21587  ax-his3 21588  ax-his4 21589
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-map 6707  df-pm 6708  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-icc 10594  df-fz 10714  df-seq 10978  df-exp 11036  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-plusg 13148  df-mulr 13149  df-starv 13150  df-tset 13154  df-ple 13155  df-ds 13157  df-rest 13254  df-topn 13255  df-topgen 13271  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cn 16884  df-cnp 16885  df-lm 16886  df-haus 16970  df-xms 17812  df-ms 17813  df-grpo 20783  df-gid 20784  df-ginv 20785  df-gdiv 20786  df-ablo 20874  df-vc 21027  df-nv 21073  df-va 21076  df-ba 21077  df-sm 21078  df-0v 21079  df-vs 21080  df-nmcv 21081  df-ims 21082  df-hnorm 21473  df-hvsub 21476  df-hlim 21477  df-sh 21711  df-ch 21726  df-nlfn 22351  df-cnfn 22352  df-lnfn 22353
  Copyright terms: Public domain W3C validator