HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelchi Unicode version

Theorem nlelchi 22643
Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1  |-  T  e. 
LinFn
nlelch.2  |-  T  e. 
ConFn
Assertion
Ref Expression
nlelchi  |-  ( null `  T )  e.  CH

Proof of Theorem nlelchi
Dummy variables  f  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlelch.1 . . 3  |-  T  e. 
LinFn
21nlelshi 22642 . 2  |-  ( null `  T )  e.  SH
3 vex 2793 . . . . . 6  |-  x  e. 
_V
43hlimveci 21771 . . . . 5  |-  ( f 
~~>v  x  ->  x  e.  ~H )
54adantl 452 . . . 4  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  x  e.  ~H )
6 eqid 2285 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
76cnfldhaus 18296 . . . . . 6  |-  ( TopOpen ` fld )  e.  Haus
87a1i 10 . . . . 5  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( TopOpen
` fld
)  e.  Haus )
9 eqid 2285 . . . . . . . . . 10  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
10 eqid 2285 . . . . . . . . . . 11  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
119, 10hhims 21753 . . . . . . . . . 10  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
12 eqid 2285 . . . . . . . . . 10  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
139, 11, 12hhlm 21780 . . . . . . . . 9  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
14 resss 4981 . . . . . . . . 9  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
1513, 14eqsstri 3210 . . . . . . . 8  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
1615ssbri 4067 . . . . . . 7  |-  ( f 
~~>v  x  ->  f ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) ) x )
1716adantl 452 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  f
( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) ) x )
18 nlelch.2 . . . . . . . 8  |-  T  e. 
ConFn
1910, 12, 6hhcnf 22487 . . . . . . . 8  |-  ConFn  =  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( TopOpen ` fld ) )
2018, 19eleqtri 2357 . . . . . . 7  |-  T  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( TopOpen ` fld ) )
2120a1i 10 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  T  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( TopOpen ` fld ) ) )
2217, 21lmcn 17035 . . . . 5  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )
( ~~> t `  ( TopOpen
` fld
) ) ( T `
 x ) )
231lnfnfi 22623 . . . . . . . . . 10  |-  T : ~H
--> CC
24 ffvelrn 5665 . . . . . . . . . . 11  |-  ( ( f : NN --> ( null `  T )  /\  n  e.  NN )  ->  (
f `  n )  e.  ( null `  T
) )
2524adantlr 695 . . . . . . . . . 10  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( f `  n )  e.  (
null `  T )
)
26 elnlfn2 22511 . . . . . . . . . 10  |-  ( ( T : ~H --> CC  /\  ( f `  n
)  e.  ( null `  T ) )  -> 
( T `  (
f `  n )
)  =  0 )
2723, 25, 26sylancr 644 . . . . . . . . 9  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( T `  ( f `  n
) )  =  0 )
28 fvco3 5598 . . . . . . . . . 10  |-  ( ( f : NN --> ( null `  T )  /\  n  e.  NN )  ->  (
( T  o.  f
) `  n )  =  ( T `  ( f `  n
) ) )
2928adantlr 695 . . . . . . . . 9  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( ( T  o.  f ) `  n )  =  ( T `  ( f `
 n ) ) )
30 c0ex 8834 . . . . . . . . . . 11  |-  0  e.  _V
3130fvconst2 5731 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( NN  X.  {
0 } ) `  n )  =  0 )
3231adantl 452 . . . . . . . . 9  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( ( NN 
X.  { 0 } ) `  n )  =  0 )
3327, 29, 323eqtr4d 2327 . . . . . . . 8  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( ( T  o.  f ) `  n )  =  ( ( NN  X.  {
0 } ) `  n ) )
3433ralrimiva 2628 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  A. n  e.  NN  ( ( T  o.  f ) `  n )  =  ( ( NN  X.  {
0 } ) `  n ) )
35 ffn 5391 . . . . . . . . . 10  |-  ( T : ~H --> CC  ->  T  Fn  ~H )
3623, 35ax-mp 8 . . . . . . . . 9  |-  T  Fn  ~H
37 simpl 443 . . . . . . . . . 10  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  f : NN --> ( null `  T
) )
382shssii 21794 . . . . . . . . . 10  |-  ( null `  T )  C_  ~H
39 fss 5399 . . . . . . . . . 10  |-  ( ( f : NN --> ( null `  T )  /\  ( null `  T )  C_  ~H )  ->  f : NN --> ~H )
4037, 38, 39sylancl 643 . . . . . . . . 9  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  f : NN --> ~H )
41 fnfco 5409 . . . . . . . . 9  |-  ( ( T  Fn  ~H  /\  f : NN --> ~H )  ->  ( T  o.  f
)  Fn  NN )
4236, 40, 41sylancr 644 . . . . . . . 8  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )  Fn  NN )
4330fconst 5429 . . . . . . . . 9  |-  ( NN 
X.  { 0 } ) : NN --> { 0 }
44 ffn 5391 . . . . . . . . 9  |-  ( ( NN  X.  { 0 } ) : NN --> { 0 }  ->  ( NN  X.  { 0 } )  Fn  NN )
4543, 44ax-mp 8 . . . . . . . 8  |-  ( NN 
X.  { 0 } )  Fn  NN
46 eqfnfv 5624 . . . . . . . 8  |-  ( ( ( T  o.  f
)  Fn  NN  /\  ( NN  X.  { 0 } )  Fn  NN )  ->  ( ( T  o.  f )  =  ( NN  X.  {
0 } )  <->  A. n  e.  NN  ( ( T  o.  f ) `  n )  =  ( ( NN  X.  {
0 } ) `  n ) ) )
4742, 45, 46sylancl 643 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  (
( T  o.  f
)  =  ( NN 
X.  { 0 } )  <->  A. n  e.  NN  ( ( T  o.  f ) `  n
)  =  ( ( NN  X.  { 0 } ) `  n
) ) )
4834, 47mpbird 223 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )  =  ( NN  X.  { 0 } ) )
496cnfldtopon 18294 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
5049a1i 10 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
51 0cn 8833 . . . . . . . 8  |-  0  e.  CC
5251a1i 10 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  0  e.  CC )
53 1z 10055 . . . . . . . 8  |-  1  e.  ZZ
5453a1i 10 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  1  e.  ZZ )
55 nnuz 10265 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
5655lmconst 16993 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  0  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  { 0 } ) ( ~~> t `  ( TopOpen ` fld ) ) 0 )
5750, 52, 54, 56syl3anc 1182 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( NN  X.  { 0 } ) ( ~~> t `  ( TopOpen ` fld ) ) 0 )
5848, 57eqbrtrd 4045 . . . . 5  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )
( ~~> t `  ( TopOpen
` fld
) ) 0 )
598, 22, 58lmmo 17110 . . . 4  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T `  x )  =  0 )
60 elnlfn 22510 . . . . 5  |-  ( T : ~H --> CC  ->  ( x  e.  ( null `  T )  <->  ( x  e.  ~H  /\  ( T `
 x )  =  0 ) ) )
6123, 60ax-mp 8 . . . 4  |-  ( x  e.  ( null `  T
)  <->  ( x  e. 
~H  /\  ( T `  x )  =  0 ) )
625, 59, 61sylanbrc 645 . . 3  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  x  e.  ( null `  T
) )
6362gen2 1536 . 2  |-  A. f A. x ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  x  e.  ( null `  T
) )
64 isch2 21805 . 2  |-  ( (
null `  T )  e.  CH  <->  ( ( null `  T )  e.  SH  /\ 
A. f A. x
( ( f : NN --> ( null `  T
)  /\  f  ~~>v  x )  ->  x  e.  ( null `  T )
) ) )
652, 63, 64mpbir2an 886 1  |-  ( null `  T )  e.  CH
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1529    = wceq 1625    e. wcel 1686   A.wral 2545    C_ wss 3154   {csn 3642   <.cop 3645   class class class wbr 4025    X. cxp 4689    |` cres 4693    o. ccom 4695    Fn wfn 5252   -->wf 5253   ` cfv 5257  (class class class)co 5860    ^m cmap 6774   CCcc 8737   0cc0 8739   1c1 8740   NNcn 9748   ZZcz 10026   TopOpenctopn 13328   MetOpencmopn 16374  ℂfldccnfld 16379  TopOnctopon 16634    Cn ccn 16956   ~~> tclm 16958   Hauscha 17038   ~Hchil 21501    +h cva 21502    .h csm 21503   normhcno 21505    -h cmv 21507    ~~>v chli 21509   SHcsh 21510   CHcch 21511   nullcnl 21534   ConFnccnfn 21535   LinFnclf 21536
This theorem is referenced by:  riesz3i  22644
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819  ax-hilex 21581  ax-hfvadd 21582  ax-hvcom 21583  ax-hvass 21584  ax-hv0cl 21585  ax-hvaddid 21586  ax-hfvmul 21587  ax-hvmulid 21588  ax-hvmulass 21589  ax-hvdistr1 21590  ax-hvdistr2 21591  ax-hvmul0 21592  ax-hfi 21660  ax-his1 21663  ax-his2 21664  ax-his3 21665  ax-his4 21666
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-icc 10665  df-fz 10785  df-seq 11049  df-exp 11107  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-plusg 13223  df-mulr 13224  df-starv 13225  df-tset 13229  df-ple 13230  df-ds 13232  df-rest 13329  df-topn 13330  df-topgen 13346  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cn 16959  df-cnp 16960  df-lm 16961  df-haus 17045  df-xms 17887  df-ms 17888  df-grpo 20860  df-gid 20861  df-ginv 20862  df-gdiv 20863  df-ablo 20951  df-vc 21104  df-nv 21150  df-va 21153  df-ba 21154  df-sm 21155  df-0v 21156  df-vs 21157  df-nmcv 21158  df-ims 21159  df-hnorm 21550  df-hvsub 21553  df-hlim 21554  df-sh 21788  df-ch 21803  df-nlfn 22428  df-cnfn 22429  df-lnfn 22430
  Copyright terms: Public domain W3C validator