MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmdsdi Unicode version

Theorem nlmdsdi 18244
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nlmdsdi.v  |-  V  =  ( Base `  W
)
nlmdsdi.s  |-  .x.  =  ( .s `  W )
nlmdsdi.f  |-  F  =  (Scalar `  W )
nlmdsdi.k  |-  K  =  ( Base `  F
)
nlmdsdi.d  |-  D  =  ( dist `  W
)
nlmdsdi.a  |-  A  =  ( norm `  F
)
Assertion
Ref Expression
nlmdsdi  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( ( A `  X )  x.  ( Y D Z ) )  =  ( ( X  .x.  Y
) D ( X 
.x.  Z ) ) )

Proof of Theorem nlmdsdi
StepHypRef Expression
1 simpl 443 . . . 4  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  W  e. NrmMod )
2 simpr1 961 . . . 4  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  X  e.  K )
3 nlmngp 18240 . . . . . . 7  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
43adantr 451 . . . . . 6  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  W  e. NrmGrp )
5 ngpgrp 18173 . . . . . 6  |-  ( W  e. NrmGrp  ->  W  e.  Grp )
64, 5syl 15 . . . . 5  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  W  e.  Grp )
7 simpr2 962 . . . . 5  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  Y  e.  V )
8 simpr3 963 . . . . 5  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  Z  e.  V )
9 nlmdsdi.v . . . . . 6  |-  V  =  ( Base `  W
)
10 eqid 2316 . . . . . 6  |-  ( -g `  W )  =  (
-g `  W )
119, 10grpsubcl 14595 . . . . 5  |-  ( ( W  e.  Grp  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y ( -g `  W ) Z )  e.  V )
126, 7, 8, 11syl3anc 1182 . . . 4  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( Y
( -g `  W ) Z )  e.  V
)
13 eqid 2316 . . . . 5  |-  ( norm `  W )  =  (
norm `  W )
14 nlmdsdi.s . . . . 5  |-  .x.  =  ( .s `  W )
15 nlmdsdi.f . . . . 5  |-  F  =  (Scalar `  W )
16 nlmdsdi.k . . . . 5  |-  K  =  ( Base `  F
)
17 nlmdsdi.a . . . . 5  |-  A  =  ( norm `  F
)
189, 13, 14, 15, 16, 17nmvs 18239 . . . 4  |-  ( ( W  e. NrmMod  /\  X  e.  K  /\  ( Y ( -g `  W
) Z )  e.  V )  ->  (
( norm `  W ) `  ( X  .x.  ( Y ( -g `  W
) Z ) ) )  =  ( ( A `  X )  x.  ( ( norm `  W ) `  ( Y ( -g `  W
) Z ) ) ) )
191, 2, 12, 18syl3anc 1182 . . 3  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( ( norm `  W ) `  ( X  .x.  ( Y ( -g `  W
) Z ) ) )  =  ( ( A `  X )  x.  ( ( norm `  W ) `  ( Y ( -g `  W
) Z ) ) ) )
20 nlmlmod 18241 . . . . . 6  |-  ( W  e. NrmMod  ->  W  e.  LMod )
2120adantr 451 . . . . 5  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  W  e.  LMod )
229, 14, 15, 16, 10, 21, 2, 7, 8lmodsubdi 15731 . . . 4  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( X  .x.  ( Y ( -g `  W ) Z ) )  =  ( ( X  .x.  Y ) ( -g `  W
) ( X  .x.  Z ) ) )
2322fveq2d 5567 . . 3  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( ( norm `  W ) `  ( X  .x.  ( Y ( -g `  W
) Z ) ) )  =  ( (
norm `  W ) `  ( ( X  .x.  Y ) ( -g `  W ) ( X 
.x.  Z ) ) ) )
2419, 23eqtr3d 2350 . 2  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( ( A `  X )  x.  ( ( norm `  W
) `  ( Y
( -g `  W ) Z ) ) )  =  ( ( norm `  W ) `  (
( X  .x.  Y
) ( -g `  W
) ( X  .x.  Z ) ) ) )
25 nlmdsdi.d . . . . 5  |-  D  =  ( dist `  W
)
2613, 9, 10, 25ngpds 18177 . . . 4  |-  ( ( W  e. NrmGrp  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y D Z )  =  ( ( norm `  W
) `  ( Y
( -g `  W ) Z ) ) )
274, 7, 8, 26syl3anc 1182 . . 3  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( Y D Z )  =  ( ( norm `  W
) `  ( Y
( -g `  W ) Z ) ) )
2827oveq2d 5916 . 2  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( ( A `  X )  x.  ( Y D Z ) )  =  ( ( A `  X
)  x.  ( (
norm `  W ) `  ( Y ( -g `  W ) Z ) ) ) )
299, 15, 14, 16lmodvscl 15693 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K  /\  Y  e.  V )  ->  ( X  .x.  Y )  e.  V )
3021, 2, 7, 29syl3anc 1182 . . 3  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( X  .x.  Y )  e.  V
)
319, 15, 14, 16lmodvscl 15693 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K  /\  Z  e.  V )  ->  ( X  .x.  Z )  e.  V )
3221, 2, 8, 31syl3anc 1182 . . 3  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( X  .x.  Z )  e.  V
)
3313, 9, 10, 25ngpds 18177 . . 3  |-  ( ( W  e. NrmGrp  /\  ( X  .x.  Y )  e.  V  /\  ( X 
.x.  Z )  e.  V )  ->  (
( X  .x.  Y
) D ( X 
.x.  Z ) )  =  ( ( norm `  W ) `  (
( X  .x.  Y
) ( -g `  W
) ( X  .x.  Z ) ) ) )
344, 30, 32, 33syl3anc 1182 . 2  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( ( X  .x.  Y ) D ( X  .x.  Z
) )  =  ( ( norm `  W
) `  ( ( X  .x.  Y ) (
-g `  W )
( X  .x.  Z
) ) ) )
3524, 28, 343eqtr4d 2358 1  |-  ( ( W  e. NrmMod  /\  ( X  e.  K  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( ( A `  X )  x.  ( Y D Z ) )  =  ( ( X  .x.  Y
) D ( X 
.x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   ` cfv 5292  (class class class)co 5900    x. cmul 8787   Basecbs 13195  Scalarcsca 13258   .scvsca 13259   distcds 13264   Grpcgrp 14411   -gcsg 14414   LModclmod 15676   normcnm 18151  NrmGrpcngp 18152  NrmModcnlm 18155
This theorem is referenced by:  nlmvscnlem2  18248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-map 6817  df-en 6907  df-dom 6908  df-sdom 6909  df-sup 7239  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-n0 10013  df-z 10072  df-uz 10278  df-q 10364  df-rp 10402  df-xneg 10499  df-xadd 10500  df-xmul 10501  df-ndx 13198  df-slot 13199  df-base 13200  df-sets 13201  df-plusg 13268  df-topgen 13393  df-0g 13453  df-mnd 14416  df-grp 14538  df-minusg 14539  df-sbg 14540  df-mgp 15375  df-rng 15389  df-ur 15391  df-lmod 15678  df-xmet 16425  df-met 16426  df-bl 16427  df-mopn 16428  df-top 16692  df-bases 16694  df-topon 16695  df-topsp 16696  df-xms 17937  df-ms 17938  df-nm 18157  df-ngp 18158  df-nlm 18161
  Copyright terms: Public domain W3C validator