HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnex Unicode version

Theorem nmcfnex 22558
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmcfnex  |-  ( ( T  e.  LinFn  /\  T  e.  ConFn )  ->  ( normfn `
 T )  e.  RR )

Proof of Theorem nmcfnex
StepHypRef Expression
1 elin 3300 . 2  |-  ( T  e.  ( LinFn  i^i  ConFn )  <-> 
( T  e.  LinFn  /\  T  e.  ConFn ) )
2 fveq2 5423 . . . 4  |-  ( T  =  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  -> 
( normfn `  T )  =  ( normfn `  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) ) ) )
32eleq1d 2322 . . 3  |-  ( T  =  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  -> 
( ( normfn `  T
)  e.  RR  <->  ( normfn `  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H 
X.  { 0 } ) ) )  e.  RR ) )
4 0lnfn 22490 . . . . . . . 8  |-  ( ~H 
X.  { 0 } )  e.  LinFn
5 0cnfn 22485 . . . . . . . 8  |-  ( ~H 
X.  { 0 } )  e.  ConFn
6 elin 3300 . . . . . . . 8  |-  ( ( ~H  X.  { 0 } )  e.  (
LinFn  i^i  ConFn )  <->  ( ( ~H  X.  { 0 } )  e.  LinFn  /\  ( ~H  X.  { 0 } )  e.  ConFn ) )
74, 5, 6mpbir2an 891 . . . . . . 7  |-  ( ~H 
X.  { 0 } )  e.  ( LinFn  i^i  ConFn )
87elimel 3558 . . . . . 6  |-  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) )  e.  ( LinFn  i^i  ConFn )
9 elin 3300 . . . . . 6  |-  ( if ( T  e.  (
LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  e.  ( LinFn  i^i  ConFn )  <->  ( if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) )  e.  LinFn  /\  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) )  e.  ConFn ) )
108, 9mpbi 201 . . . . 5  |-  ( if ( T  e.  (
LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  e.  LinFn  /\  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  e.  ConFn )
1110simpli 446 . . . 4  |-  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) )  e.  LinFn
1210simpri 450 . . . 4  |-  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) )  e.  ConFn
1311, 12nmcfnexi 22556 . . 3  |-  ( normfn `  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H 
X.  { 0 } ) ) )  e.  RR
143, 13dedth 3547 . 2  |-  ( T  e.  ( LinFn  i^i  ConFn )  ->  ( normfn `  T
)  e.  RR )
151, 14sylbir 206 1  |-  ( ( T  e.  LinFn  /\  T  e.  ConFn )  ->  ( normfn `
 T )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    i^i cin 3093   ifcif 3506   {csn 3581    X. cxp 4624   ` cfv 4638   RRcr 8669   0cc0 8670   ~Hchil 21424   normfncnmf 21456   ConFnccnfn 21458   LinFnclf 21459
This theorem is referenced by:  lnfnconi  22560  lnfncnbd  22562
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-hilex 21504  ax-hfvadd 21505  ax-hv0cl 21508  ax-hvaddid 21509  ax-hfvmul 21510  ax-hvmulid 21511  ax-hvmulass 21512  ax-hvmul0 21515  ax-hfi 21583  ax-his1 21586  ax-his3 21588  ax-his4 21589
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-sup 7127  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-n0 9898  df-z 9957  df-uz 10163  df-rp 10287  df-seq 10978  df-exp 11036  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-hnorm 21473  df-hvsub 21476  df-nmfn 22350  df-cnfn 22352  df-lnfn 22353
  Copyright terms: Public domain W3C validator