HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnexi Unicode version

Theorem nmcfnexi 22647
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1  |-  T  e. 
LinFn
nmcfnex.2  |-  T  e. 
ConFn
Assertion
Ref Expression
nmcfnexi  |-  ( normfn `  T )  e.  RR

Proof of Theorem nmcfnexi
Dummy variables  x  m  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcfnex.2 . . . 4  |-  T  e. 
ConFn
2 ax-hv0cl 21599 . . . 4  |-  0h  e.  ~H
3 1rp 10374 . . . 4  |-  1  e.  RR+
4 cnfnc 22526 . . . 4  |-  ( ( T  e.  ConFn  /\  0h  e.  ~H  /\  1  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  ( z  -h  0h ) )  <  y  ->  ( abs `  (
( T `  z
)  -  ( T `
 0h ) ) )  <  1 ) )
51, 2, 3, 4mp3an 1277 . . 3  |-  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  ( z  -h  0h ) )  <  y  ->  ( abs `  (
( T `  z
)  -  ( T `
 0h ) ) )  <  1 )
6 hvsub0 21671 . . . . . . . 8  |-  ( z  e.  ~H  ->  (
z  -h  0h )  =  z )
76fveq2d 5545 . . . . . . 7  |-  ( z  e.  ~H  ->  ( normh `  ( z  -h 
0h ) )  =  ( normh `  z )
)
87breq1d 4049 . . . . . 6  |-  ( z  e.  ~H  ->  (
( normh `  ( z  -h  0h ) )  < 
y  <->  ( normh `  z
)  <  y )
)
9 nmcfnex.1 . . . . . . . . . . 11  |-  T  e. 
LinFn
109lnfn0i 22638 . . . . . . . . . 10  |-  ( T `
 0h )  =  0
1110oveq2i 5885 . . . . . . . . 9  |-  ( ( T `  z )  -  ( T `  0h ) )  =  ( ( T `  z
)  -  0 )
129lnfnfi 22637 . . . . . . . . . . 11  |-  T : ~H
--> CC
1312ffvelrni 5680 . . . . . . . . . 10  |-  ( z  e.  ~H  ->  ( T `  z )  e.  CC )
1413subid1d 9162 . . . . . . . . 9  |-  ( z  e.  ~H  ->  (
( T `  z
)  -  0 )  =  ( T `  z ) )
1511, 14syl5eq 2340 . . . . . . . 8  |-  ( z  e.  ~H  ->  (
( T `  z
)  -  ( T `
 0h ) )  =  ( T `  z ) )
1615fveq2d 5545 . . . . . . 7  |-  ( z  e.  ~H  ->  ( abs `  ( ( T `
 z )  -  ( T `  0h )
) )  =  ( abs `  ( T `
 z ) ) )
1716breq1d 4049 . . . . . 6  |-  ( z  e.  ~H  ->  (
( abs `  (
( T `  z
)  -  ( T `
 0h ) ) )  <  1  <->  ( abs `  ( T `  z ) )  <  1 ) )
188, 17imbi12d 311 . . . . 5  |-  ( z  e.  ~H  ->  (
( ( normh `  (
z  -h  0h )
)  <  y  ->  ( abs `  ( ( T `  z )  -  ( T `  0h ) ) )  <  1 )  <->  ( ( normh `  z )  < 
y  ->  ( abs `  ( T `  z
) )  <  1
) ) )
1918ralbiia 2588 . . . 4  |-  ( A. z  e.  ~H  (
( normh `  ( z  -h  0h ) )  < 
y  ->  ( abs `  ( ( T `  z )  -  ( T `  0h )
) )  <  1
)  <->  A. z  e.  ~H  ( ( normh `  z
)  <  y  ->  ( abs `  ( T `
 z ) )  <  1 ) )
2019rexbii 2581 . . 3  |-  ( E. y  e.  RR+  A. z  e.  ~H  ( ( normh `  ( z  -h  0h ) )  <  y  ->  ( abs `  (
( T `  z
)  -  ( T `
 0h ) ) )  <  1 )  <->  E. y  e.  RR+  A. z  e.  ~H  ( ( normh `  z )  <  y  ->  ( abs `  ( T `  z )
)  <  1 ) )
215, 20mpbi 199 . 2  |-  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( abs `  ( T `  z )
)  <  1 )
22 nmfnval 22472 . . 3  |-  ( T : ~H --> CC  ->  (
normfn `  T )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( abs `  ( T `  x
) ) ) } ,  RR* ,  <  )
)
2312, 22ax-mp 8 . 2  |-  ( normfn `  T )  =  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( abs `  ( T `  x )
) ) } ,  RR* ,  <  )
2412ffvelrni 5680 . . 3  |-  ( x  e.  ~H  ->  ( T `  x )  e.  CC )
2524abscld 11934 . 2  |-  ( x  e.  ~H  ->  ( abs `  ( T `  x ) )  e.  RR )
2610fveq2i 5544 . . 3  |-  ( abs `  ( T `  0h ) )  =  ( abs `  0 )
27 abs0 11786 . . 3  |-  ( abs `  0 )  =  0
2826, 27eqtri 2316 . 2  |-  ( abs `  ( T `  0h ) )  =  0
29 rpcn 10378 . . . . 5  |-  ( ( y  /  2 )  e.  RR+  ->  ( y  /  2 )  e.  CC )
309lnfnmuli 22640 . . . . 5  |-  ( ( ( y  /  2
)  e.  CC  /\  x  e.  ~H )  ->  ( T `  (
( y  /  2
)  .h  x ) )  =  ( ( y  /  2 )  x.  ( T `  x ) ) )
3129, 30sylan 457 . . . 4  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( T `  ( (
y  /  2 )  .h  x ) )  =  ( ( y  /  2 )  x.  ( T `  x
) ) )
3231fveq2d 5545 . . 3  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( abs `  ( T `  ( ( y  / 
2 )  .h  x
) ) )  =  ( abs `  (
( y  /  2
)  x.  ( T `
 x ) ) ) )
33 absmul 11795 . . . 4  |-  ( ( ( y  /  2
)  e.  CC  /\  ( T `  x )  e.  CC )  -> 
( abs `  (
( y  /  2
)  x.  ( T `
 x ) ) )  =  ( ( abs `  ( y  /  2 ) )  x.  ( abs `  ( T `  x )
) ) )
3429, 24, 33syl2an 463 . . 3  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( abs `  ( ( y  /  2 )  x.  ( T `  x
) ) )  =  ( ( abs `  (
y  /  2 ) )  x.  ( abs `  ( T `  x
) ) ) )
35 rpre 10376 . . . . . 6  |-  ( ( y  /  2 )  e.  RR+  ->  ( y  /  2 )  e.  RR )
36 rpge0 10382 . . . . . 6  |-  ( ( y  /  2 )  e.  RR+  ->  0  <_ 
( y  /  2
) )
3735, 36absidd 11921 . . . . 5  |-  ( ( y  /  2 )  e.  RR+  ->  ( abs `  ( y  /  2
) )  =  ( y  /  2 ) )
3837adantr 451 . . . 4  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( abs `  ( y  / 
2 ) )  =  ( y  /  2
) )
3938oveq1d 5889 . . 3  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( abs `  (
y  /  2 ) )  x.  ( abs `  ( T `  x
) ) )  =  ( ( y  / 
2 )  x.  ( abs `  ( T `  x ) ) ) )
4032, 34, 393eqtrrd 2333 . 2  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( y  /  2
)  x.  ( abs `  ( T `  x
) ) )  =  ( abs `  ( T `  ( (
y  /  2 )  .h  x ) ) ) )
4121, 23, 25, 28, 40nmcexi 22622 1  |-  ( normfn `  T )  e.  RR
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557   class class class wbr 4039   -->wf 5267   ` cfv 5271  (class class class)co 5874   supcsup 7209   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   2c2 9811   RR+crp 10370   abscabs 11735   ~Hchil 21515    .h csm 21517   normhcno 21519   0hc0v 21520    -h cmv 21521   normfncnmf 21547   ConFnccnfn 21549   LinFnclf 21550
This theorem is referenced by:  nmcfnlbi  22648  nmcfnex  22649
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-hilex 21595  ax-hv0cl 21599  ax-hvaddid 21600  ax-hfvmul 21601  ax-hvmulid 21602  ax-hvmulass 21603  ax-hvmul0 21606  ax-hfi 21674  ax-his1 21677  ax-his3 21679  ax-his4 21680
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-hnorm 21564  df-hvsub 21567  df-nmfn 22441  df-cnfn 22443  df-lnfn 22444
  Copyright terms: Public domain W3C validator