HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnlb Unicode version

Theorem nmcfnlb 22626
Description: A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmcfnlb  |-  ( ( T  e.  LinFn  /\  T  e.  ConFn  /\  A  e.  ~H )  ->  ( abs `  ( T `  A
) )  <_  (
( normfn `  T )  x.  ( normh `  A )
) )

Proof of Theorem nmcfnlb
StepHypRef Expression
1 elin 3359 . . 3  |-  ( T  e.  ( LinFn  i^i  ConFn )  <-> 
( T  e.  LinFn  /\  T  e.  ConFn ) )
2 fveq1 5484 . . . . . . . 8  |-  ( T  =  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  -> 
( T `  A
)  =  ( if ( T  e.  (
LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) ) `  A ) )
32fveq2d 5489 . . . . . . 7  |-  ( T  =  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  -> 
( abs `  ( T `  A )
)  =  ( abs `  ( if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) ) `  A ) ) )
4 fveq2 5485 . . . . . . . 8  |-  ( T  =  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  -> 
( normfn `  T )  =  ( normfn `  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) ) ) )
54oveq1d 5834 . . . . . . 7  |-  ( T  =  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  -> 
( ( normfn `  T
)  x.  ( normh `  A ) )  =  ( ( normfn `  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) ) )  x.  ( normh `  A ) ) )
63, 5breq12d 4037 . . . . . 6  |-  ( T  =  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  -> 
( ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
)  <->  ( abs `  ( if ( T  e.  (
LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) ) `  A ) )  <_  ( ( normfn `
 if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) ) )  x.  ( normh `  A
) ) ) )
76imbi2d 309 . . . . 5  |-  ( T  =  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  -> 
( ( A  e. 
~H  ->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) )  <->  ( A  e.  ~H  ->  ( abs `  ( if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) ) `  A ) )  <_ 
( ( normfn `  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) ) )  x.  ( normh `  A ) ) ) ) )
8 0lnfn 22557 . . . . . . . . . 10  |-  ( ~H 
X.  { 0 } )  e.  LinFn
9 0cnfn 22552 . . . . . . . . . 10  |-  ( ~H 
X.  { 0 } )  e.  ConFn
10 elin 3359 . . . . . . . . . 10  |-  ( ( ~H  X.  { 0 } )  e.  (
LinFn  i^i  ConFn )  <->  ( ( ~H  X.  { 0 } )  e.  LinFn  /\  ( ~H  X.  { 0 } )  e.  ConFn ) )
118, 9, 10mpbir2an 888 . . . . . . . . 9  |-  ( ~H 
X.  { 0 } )  e.  ( LinFn  i^i  ConFn )
1211elimel 3618 . . . . . . . 8  |-  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) )  e.  ( LinFn  i^i  ConFn )
13 elin 3359 . . . . . . . 8  |-  ( if ( T  e.  (
LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  e.  ( LinFn  i^i  ConFn )  <->  ( if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) )  e.  LinFn  /\  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) )  e.  ConFn ) )
1412, 13mpbi 201 . . . . . . 7  |-  ( if ( T  e.  (
LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  e.  LinFn  /\  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H  X.  { 0 } ) )  e.  ConFn )
1514simpli 446 . . . . . 6  |-  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) )  e.  LinFn
1614simpri 450 . . . . . 6  |-  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) )  e.  ConFn
1715, 16nmcfnlbi 22624 . . . . 5  |-  ( A  e.  ~H  ->  ( abs `  ( if ( T  e.  ( LinFn  i^i  ConFn ) ,  T , 
( ~H  X.  {
0 } ) ) `
 A ) )  <_  ( ( normfn `  if ( T  e.  ( LinFn  i^i  ConFn ) ,  T ,  ( ~H 
X.  { 0 } ) ) )  x.  ( normh `  A )
) )
187, 17dedth 3607 . . . 4  |-  ( T  e.  ( LinFn  i^i  ConFn )  ->  ( A  e. 
~H  ->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) ) )
1918imp 420 . . 3  |-  ( ( T  e.  ( LinFn  i^i  ConFn )  /\  A  e. 
~H )  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )
201, 19sylanbr 461 . 2  |-  ( ( ( T  e.  LinFn  /\  T  e.  ConFn )  /\  A  e.  ~H )  ->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) )
21203impa 1148 1  |-  ( ( T  e.  LinFn  /\  T  e.  ConFn  /\  A  e.  ~H )  ->  ( abs `  ( T `  A
) )  <_  (
( normfn `  T )  x.  ( normh `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    i^i cin 3152   ifcif 3566   {csn 3641   class class class wbr 4024    X. cxp 4686   ` cfv 5221  (class class class)co 5819   0cc0 8732    x. cmul 8737    <_ cle 8863   abscabs 11713   ~Hchil 21491   normhcno 21495   normfncnmf 21523   ConFnccnfn 21525   LinFnclf 21526
This theorem is referenced by:  lnfnconi  22627
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-hilex 21571  ax-hfvadd 21572  ax-hv0cl 21575  ax-hvaddid 21576  ax-hfvmul 21577  ax-hvmulid 21578  ax-hvmulass 21579  ax-hvmul0 21582  ax-hfi 21650  ax-his1 21653  ax-his3 21655  ax-his4 21656
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-hnorm 21540  df-hvsub 21543  df-nmfn 22417  df-cnfn 22419  df-lnfn 22420
  Copyright terms: Public domain W3C validator