HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnlbi Unicode version

Theorem nmcfnlbi 22625
Description: A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1  |-  T  e. 
LinFn
nmcfnex.2  |-  T  e. 
ConFn
Assertion
Ref Expression
nmcfnlbi  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )

Proof of Theorem nmcfnlbi
StepHypRef Expression
1 fveq2 5486 . . . . . . 7  |-  ( A  =  0h  ->  ( T `  A )  =  ( T `  0h ) )
2 nmcfnex.1 . . . . . . . 8  |-  T  e. 
LinFn
32lnfn0i 22615 . . . . . . 7  |-  ( T `
 0h )  =  0
41, 3syl6eq 2333 . . . . . 6  |-  ( A  =  0h  ->  ( T `  A )  =  0 )
54fveq2d 5490 . . . . 5  |-  ( A  =  0h  ->  ( abs `  ( T `  A ) )  =  ( abs `  0
) )
6 abs0 11765 . . . . 5  |-  ( abs `  0 )  =  0
75, 6syl6eq 2333 . . . 4  |-  ( A  =  0h  ->  ( abs `  ( T `  A ) )  =  0 )
8 0le0 9823 . . . . 5  |-  0  <_  0
9 fveq2 5486 . . . . . . . 8  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
10 norm0 21700 . . . . . . . 8  |-  ( normh `  0h )  =  0
119, 10syl6eq 2333 . . . . . . 7  |-  ( A  =  0h  ->  ( normh `  A )  =  0 )
1211oveq2d 5836 . . . . . 6  |-  ( A  =  0h  ->  (
( normfn `  T )  x.  ( normh `  A )
)  =  ( (
normfn `  T )  x.  0 ) )
13 nmcfnex.2 . . . . . . . . 9  |-  T  e. 
ConFn
142, 13nmcfnexi 22624 . . . . . . . 8  |-  ( normfn `  T )  e.  RR
1514recni 8845 . . . . . . 7  |-  ( normfn `  T )  e.  CC
1615mul01i 8998 . . . . . 6  |-  ( (
normfn `  T )  x.  0 )  =  0
1712, 16syl6req 2334 . . . . 5  |-  ( A  =  0h  ->  0  =  ( ( normfn `  T )  x.  ( normh `  A ) ) )
188, 17syl5breq 4060 . . . 4  |-  ( A  =  0h  ->  0  <_  ( ( normfn `  T
)  x.  ( normh `  A ) ) )
197, 18eqbrtrd 4045 . . 3  |-  ( A  =  0h  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )
2019adantl 454 . 2  |-  ( ( A  e.  ~H  /\  A  =  0h )  ->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) )
212lnfnfi 22614 . . . . . . . . . 10  |-  T : ~H
--> CC
2221ffvelrni 5626 . . . . . . . . 9  |-  ( A  e.  ~H  ->  ( T `  A )  e.  CC )
2322abscld 11913 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  e.  RR )
2423adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  ( T `  A )
)  e.  RR )
2524recnd 8857 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  ( T `  A )
)  e.  CC )
26 normcl 21697 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
2726adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  A
)  e.  RR )
2827recnd 8857 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  A
)  e.  CC )
29 norm-i 21701 . . . . . . . . 9  |-  ( A  e.  ~H  ->  (
( normh `  A )  =  0  <->  A  =  0h ) )
3029notbid 287 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( -.  ( normh `  A )  =  0  <->  -.  A  =  0h ) )
3130biimpar 473 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  -.  ( normh `  A )  =  0 )
32 df-ne 2450 . . . . . . 7  |-  ( (
normh `  A )  =/=  0  <->  -.  ( normh `  A )  =  0 )
3331, 32sylibr 205 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  A
)  =/=  0 )
3425, 28, 33divrec2d 9536 . . . . 5  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( abs `  ( T `  A
) )  /  ( normh `  A ) )  =  ( ( 1  /  ( normh `  A
) )  x.  ( abs `  ( T `  A ) ) ) )
3527, 33rereccld 9583 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( 1  / 
( normh `  A )
)  e.  RR )
3635recnd 8857 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( 1  / 
( normh `  A )
)  e.  CC )
37 simpl 445 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  A  e.  ~H )
382lnfnmuli 22617 . . . . . . . 8  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( T `
 A ) ) )
3936, 37, 38syl2anc 644 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( T `  A
) ) )
4039fveq2d 5490 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) )  =  ( abs `  (
( 1  /  ( normh `  A ) )  x.  ( T `  A ) ) ) )
4122adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( T `  A )  e.  CC )
4236, 41absmuld 11931 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  (
( 1  /  ( normh `  A ) )  x.  ( T `  A ) ) )  =  ( ( abs `  ( 1  /  ( normh `  A ) ) )  x.  ( abs `  ( T `  A
) ) ) )
43 df-ne 2450 . . . . . . . . . . . 12  |-  ( A  =/=  0h  <->  -.  A  =  0h )
44 normgt0 21699 . . . . . . . . . . . 12  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
4543, 44syl5bbr 252 . . . . . . . . . . 11  |-  ( A  e.  ~H  ->  ( -.  A  =  0h  <->  0  <  ( normh `  A
) ) )
4645biimpa 472 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  0  <  ( normh `  A ) )
4727, 46recgt0d 9687 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  0  <  (
1  /  ( normh `  A ) ) )
48 0re 8834 . . . . . . . . . 10  |-  0  e.  RR
49 ltle 8906 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
5048, 49mpan 653 . . . . . . . . 9  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
5135, 47, 50sylc 58 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  0  <_  (
1  /  ( normh `  A ) ) )
5235, 51absidd 11900 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  (
1  /  ( normh `  A ) ) )  =  ( 1  / 
( normh `  A )
) )
5352oveq1d 5835 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( abs `  ( 1  /  ( normh `  A ) ) )  x.  ( abs `  ( T `  A
) ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( abs `  ( T `  A
) ) ) )
5440, 42, 533eqtrrd 2322 . . . . 5  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( 1  /  ( normh `  A
) )  x.  ( abs `  ( T `  A ) ) )  =  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) ) )
5534, 54eqtrd 2317 . . . 4  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( abs `  ( T `  A
) )  /  ( normh `  A ) )  =  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) ) )
56 hvmulcl 21586 . . . . . 6  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
5736, 37, 56syl2anc 644 . . . . 5  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( 1  /  ( normh `  A
) )  .h  A
)  e.  ~H )
58 normcl 21697 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  .h  A )  e. 
~H  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
5957, 58syl 17 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
60 norm1 21821 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
6143, 60sylan2br 464 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  =  1 )
62 eqle 8919 . . . . . 6  |-  ( ( ( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR  /\  ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  1 )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
6359, 61, 62syl2anc 644 . . . . 5  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
64 nmfnlb 22497 . . . . . 6  |-  ( ( T : ~H --> CC  /\  ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( abs `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T ) )
6521, 64mp3an1 1266 . . . . 5  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( abs `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T ) )
6657, 63, 65syl2anc 644 . . . 4  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T
) )
6755, 66eqbrtrd 4045 . . 3  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( abs `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normfn `  T
) )
6814a1i 12 . . . 4  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normfn `  T
)  e.  RR )
69 ledivmul2 9629 . . . 4  |-  ( ( ( abs `  ( T `  A )
)  e.  RR  /\  ( normfn `  T )  e.  RR  /\  ( (
normh `  A )  e.  RR  /\  0  < 
( normh `  A )
) )  ->  (
( ( abs `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normfn `  T )  <->  ( abs `  ( T `
 A ) )  <_  ( ( normfn `  T )  x.  ( normh `  A ) ) ) )
7024, 68, 27, 46, 69syl112anc 1188 . . 3  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( ( abs `  ( T `
 A ) )  /  ( normh `  A
) )  <_  ( normfn `
 T )  <->  ( abs `  ( T `  A
) )  <_  (
( normfn `  T )  x.  ( normh `  A )
) ) )
7167, 70mpbid 203 . 2  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) )
7220, 71pm2.61dan 768 1  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2448   class class class wbr 4025   -->wf 5218   ` cfv 5222  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734    x. cmul 8738    < clt 8863    <_ cle 8864    / cdiv 9419   abscabs 11714   ~Hchil 21492    .h csm 21494   normhcno 21496   0hc0v 21497   normfncnmf 21524   ConFnccnfn 21526   LinFnclf 21527
This theorem is referenced by:  nmcfnlb  22627
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-hilex 21572  ax-hv0cl 21576  ax-hvaddid 21577  ax-hfvmul 21578  ax-hvmulid 21579  ax-hvmulass 21580  ax-hvmul0 21583  ax-hfi 21651  ax-his1 21654  ax-his3 21656  ax-his4 21657
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-seq 11042  df-exp 11100  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-hnorm 21541  df-hvsub 21544  df-nmfn 22418  df-cnfn 22420  df-lnfn 22421
  Copyright terms: Public domain W3C validator