HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnlbi Unicode version

Theorem nmcfnlbi 22592
Description: A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1  |-  T  e. 
LinFn
nmcfnex.2  |-  T  e. 
ConFn
Assertion
Ref Expression
nmcfnlbi  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )

Proof of Theorem nmcfnlbi
StepHypRef Expression
1 fveq2 5458 . . . . . . 7  |-  ( A  =  0h  ->  ( T `  A )  =  ( T `  0h ) )
2 nmcfnex.1 . . . . . . . 8  |-  T  e. 
LinFn
32lnfn0i 22582 . . . . . . 7  |-  ( T `
 0h )  =  0
41, 3syl6eq 2306 . . . . . 6  |-  ( A  =  0h  ->  ( T `  A )  =  0 )
54fveq2d 5462 . . . . 5  |-  ( A  =  0h  ->  ( abs `  ( T `  A ) )  =  ( abs `  0
) )
6 abs0 11735 . . . . 5  |-  ( abs `  0 )  =  0
75, 6syl6eq 2306 . . . 4  |-  ( A  =  0h  ->  ( abs `  ( T `  A ) )  =  0 )
8 0le0 9795 . . . . 5  |-  0  <_  0
9 fveq2 5458 . . . . . . . 8  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
10 norm0 21667 . . . . . . . 8  |-  ( normh `  0h )  =  0
119, 10syl6eq 2306 . . . . . . 7  |-  ( A  =  0h  ->  ( normh `  A )  =  0 )
1211oveq2d 5808 . . . . . 6  |-  ( A  =  0h  ->  (
( normfn `  T )  x.  ( normh `  A )
)  =  ( (
normfn `  T )  x.  0 ) )
13 nmcfnex.2 . . . . . . . . 9  |-  T  e. 
ConFn
142, 13nmcfnexi 22591 . . . . . . . 8  |-  ( normfn `  T )  e.  RR
1514recni 8817 . . . . . . 7  |-  ( normfn `  T )  e.  CC
1615mul01i 8970 . . . . . 6  |-  ( (
normfn `  T )  x.  0 )  =  0
1712, 16syl6req 2307 . . . . 5  |-  ( A  =  0h  ->  0  =  ( ( normfn `  T )  x.  ( normh `  A ) ) )
188, 17syl5breq 4032 . . . 4  |-  ( A  =  0h  ->  0  <_  ( ( normfn `  T
)  x.  ( normh `  A ) ) )
197, 18eqbrtrd 4017 . . 3  |-  ( A  =  0h  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )
2019adantl 454 . 2  |-  ( ( A  e.  ~H  /\  A  =  0h )  ->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) )
212lnfnfi 22581 . . . . . . . . . 10  |-  T : ~H
--> CC
2221ffvelrni 5598 . . . . . . . . 9  |-  ( A  e.  ~H  ->  ( T `  A )  e.  CC )
2322abscld 11883 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  e.  RR )
2423adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  ( T `  A )
)  e.  RR )
2524recnd 8829 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  ( T `  A )
)  e.  CC )
26 normcl 21664 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
2726adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  A
)  e.  RR )
2827recnd 8829 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  A
)  e.  CC )
29 norm-i 21668 . . . . . . . . 9  |-  ( A  e.  ~H  ->  (
( normh `  A )  =  0  <->  A  =  0h ) )
3029notbid 287 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( -.  ( normh `  A )  =  0  <->  -.  A  =  0h ) )
3130biimpar 473 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  -.  ( normh `  A )  =  0 )
32 df-ne 2423 . . . . . . 7  |-  ( (
normh `  A )  =/=  0  <->  -.  ( normh `  A )  =  0 )
3331, 32sylibr 205 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  A
)  =/=  0 )
3425, 28, 33divrec2d 9508 . . . . 5  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( abs `  ( T `  A
) )  /  ( normh `  A ) )  =  ( ( 1  /  ( normh `  A
) )  x.  ( abs `  ( T `  A ) ) ) )
3527, 33rereccld 9555 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( 1  / 
( normh `  A )
)  e.  RR )
3635recnd 8829 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( 1  / 
( normh `  A )
)  e.  CC )
37 simpl 445 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  A  e.  ~H )
382lnfnmuli 22584 . . . . . . . 8  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( T `
 A ) ) )
3936, 37, 38syl2anc 645 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( T `  A
) ) )
4039fveq2d 5462 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) )  =  ( abs `  (
( 1  /  ( normh `  A ) )  x.  ( T `  A ) ) ) )
4122adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( T `  A )  e.  CC )
4236, 41absmuld 11901 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  (
( 1  /  ( normh `  A ) )  x.  ( T `  A ) ) )  =  ( ( abs `  ( 1  /  ( normh `  A ) ) )  x.  ( abs `  ( T `  A
) ) ) )
43 df-ne 2423 . . . . . . . . . . . 12  |-  ( A  =/=  0h  <->  -.  A  =  0h )
44 normgt0 21666 . . . . . . . . . . . 12  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
4543, 44syl5bbr 252 . . . . . . . . . . 11  |-  ( A  e.  ~H  ->  ( -.  A  =  0h  <->  0  <  ( normh `  A
) ) )
4645biimpa 472 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  0  <  ( normh `  A ) )
4727, 46recgt0d 9659 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  0  <  (
1  /  ( normh `  A ) ) )
48 0re 8806 . . . . . . . . . 10  |-  0  e.  RR
49 ltle 8878 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
5048, 49mpan 654 . . . . . . . . 9  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
5135, 47, 50sylc 58 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  0  <_  (
1  /  ( normh `  A ) ) )
5235, 51absidd 11870 . . . . . . 7  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  (
1  /  ( normh `  A ) ) )  =  ( 1  / 
( normh `  A )
) )
5352oveq1d 5807 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( abs `  ( 1  /  ( normh `  A ) ) )  x.  ( abs `  ( T `  A
) ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( abs `  ( T `  A
) ) ) )
5440, 42, 533eqtrrd 2295 . . . . 5  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( 1  /  ( normh `  A
) )  x.  ( abs `  ( T `  A ) ) )  =  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) ) )
5534, 54eqtrd 2290 . . . 4  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( abs `  ( T `  A
) )  /  ( normh `  A ) )  =  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) ) )
56 hvmulcl 21553 . . . . . 6  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
5736, 37, 56syl2anc 645 . . . . 5  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( 1  /  ( normh `  A
) )  .h  A
)  e.  ~H )
58 normcl 21664 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  .h  A )  e. 
~H  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
5957, 58syl 17 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
60 norm1 21788 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
6143, 60sylan2br 464 . . . . . 6  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  =  1 )
62 eqle 8891 . . . . . 6  |-  ( ( ( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR  /\  ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  1 )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
6359, 61, 62syl2anc 645 . . . . 5  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
64 nmfnlb 22464 . . . . . 6  |-  ( ( T : ~H --> CC  /\  ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( abs `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T ) )
6521, 64mp3an1 1269 . . . . 5  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( abs `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T ) )
6657, 63, 65syl2anc 645 . . . 4  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T
) )
6755, 66eqbrtrd 4017 . . 3  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( abs `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normfn `  T
) )
6814a1i 12 . . . 4  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( normfn `  T
)  e.  RR )
69 ledivmul2 9601 . . . 4  |-  ( ( ( abs `  ( T `  A )
)  e.  RR  /\  ( normfn `  T )  e.  RR  /\  ( (
normh `  A )  e.  RR  /\  0  < 
( normh `  A )
) )  ->  (
( ( abs `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normfn `  T )  <->  ( abs `  ( T `
 A ) )  <_  ( ( normfn `  T )  x.  ( normh `  A ) ) ) )
7024, 68, 27, 46, 69syl112anc 1191 . . 3  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( ( ( abs `  ( T `
 A ) )  /  ( normh `  A
) )  <_  ( normfn `
 T )  <->  ( abs `  ( T `  A
) )  <_  (
( normfn `  T )  x.  ( normh `  A )
) ) )
7167, 70mpbid 203 . 2  |-  ( ( A  e.  ~H  /\  -.  A  =  0h )  ->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) )
7220, 71pm2.61dan 769 1  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997   -->wf 4669   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    x. cmul 8710    < clt 8835    <_ cle 8836    / cdiv 9391   abscabs 11684   ~Hchil 21459    .h csm 21461   normhcno 21463   0hc0v 21464   normfncnmf 21491   ConFnccnfn 21493   LinFnclf 21494
This theorem is referenced by:  nmcfnlb  22594
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-hilex 21539  ax-hv0cl 21543  ax-hvaddid 21544  ax-hfvmul 21545  ax-hvmulid 21546  ax-hvmulass 21547  ax-hvmul0 21550  ax-hfi 21618  ax-his1 21621  ax-his3 21623  ax-his4 21624
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-rp 10322  df-seq 11013  df-exp 11071  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-hnorm 21508  df-hvsub 21511  df-nmfn 22385  df-cnfn 22387  df-lnfn 22388
  Copyright terms: Public domain W3C validator