HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcopexi Unicode version

Theorem nmcopexi 22599
Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1  |-  T  e. 
LinOp
nmcopex.2  |-  T  e. 
ConOp
Assertion
Ref Expression
nmcopexi  |-  ( normop `  T )  e.  RR
Dummy variables  x  m  y  z are mutually distinct and distinct from all other variables.

Proof of Theorem nmcopexi
StepHypRef Expression
1 nmcopex.2 . . . 4  |-  T  e. 
ConOp
2 ax-hv0cl 21575 . . . 4  |-  0h  e.  ~H
3 1rp 10353 . . . 4  |-  1  e.  RR+
4 cnopc 22485 . . . 4  |-  ( ( T  e.  ConOp  /\  0h  e.  ~H  /\  1  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  ( z  -h  0h ) )  <  y  ->  ( normh `  ( ( T `  z )  -h  ( T `  0h ) ) )  <  1 ) )
51, 2, 3, 4mp3an 1279 . . 3  |-  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  ( z  -h  0h ) )  <  y  ->  ( normh `  ( ( T `  z )  -h  ( T `  0h ) ) )  <  1 )
6 hvsub0 21647 . . . . . . . 8  |-  ( z  e.  ~H  ->  (
z  -h  0h )  =  z )
76fveq2d 5489 . . . . . . 7  |-  ( z  e.  ~H  ->  ( normh `  ( z  -h 
0h ) )  =  ( normh `  z )
)
87breq1d 4034 . . . . . 6  |-  ( z  e.  ~H  ->  (
( normh `  ( z  -h  0h ) )  < 
y  <->  ( normh `  z
)  <  y )
)
9 nmcopex.1 . . . . . . . . . . 11  |-  T  e. 
LinOp
109lnop0i 22542 . . . . . . . . . 10  |-  ( T `
 0h )  =  0h
1110oveq2i 5830 . . . . . . . . 9  |-  ( ( T `  z )  -h  ( T `  0h ) )  =  ( ( T `  z
)  -h  0h )
129lnopfi 22541 . . . . . . . . . . 11  |-  T : ~H
--> ~H
1312ffvelrni 5625 . . . . . . . . . 10  |-  ( z  e.  ~H  ->  ( T `  z )  e.  ~H )
14 hvsub0 21647 . . . . . . . . . 10  |-  ( ( T `  z )  e.  ~H  ->  (
( T `  z
)  -h  0h )  =  ( T `  z ) )
1513, 14syl 17 . . . . . . . . 9  |-  ( z  e.  ~H  ->  (
( T `  z
)  -h  0h )  =  ( T `  z ) )
1611, 15syl5eq 2328 . . . . . . . 8  |-  ( z  e.  ~H  ->  (
( T `  z
)  -h  ( T `
 0h ) )  =  ( T `  z ) )
1716fveq2d 5489 . . . . . . 7  |-  ( z  e.  ~H  ->  ( normh `  ( ( T `
 z )  -h  ( T `  0h ) ) )  =  ( normh `  ( T `  z ) ) )
1817breq1d 4034 . . . . . 6  |-  ( z  e.  ~H  ->  (
( normh `  ( ( T `  z )  -h  ( T `  0h ) ) )  <  1  <->  ( normh `  ( T `  z )
)  <  1 ) )
198, 18imbi12d 313 . . . . 5  |-  ( z  e.  ~H  ->  (
( ( normh `  (
z  -h  0h )
)  <  y  ->  (
normh `  ( ( T `
 z )  -h  ( T `  0h ) ) )  <  1 )  <->  ( ( normh `  z )  < 
y  ->  ( normh `  ( T `  z
) )  <  1
) ) )
2019ralbiia 2576 . . . 4  |-  ( A. z  e.  ~H  (
( normh `  ( z  -h  0h ) )  < 
y  ->  ( normh `  ( ( T `  z )  -h  ( T `  0h )
) )  <  1
)  <->  A. z  e.  ~H  ( ( normh `  z
)  <  y  ->  (
normh `  ( T `  z ) )  <  1 ) )
2120rexbii 2569 . . 3  |-  ( E. y  e.  RR+  A. z  e.  ~H  ( ( normh `  ( z  -h  0h ) )  <  y  ->  ( normh `  ( ( T `  z )  -h  ( T `  0h ) ) )  <  1 )  <->  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( normh `  ( T `  z ) )  <  1 ) )
225, 21mpbi 201 . 2  |-  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( normh `  ( T `  z ) )  <  1 )
23 nmopval 22428 . . 3  |-  ( T : ~H --> ~H  ->  (
normop `  T )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( normh `  ( T `  x
) ) ) } ,  RR* ,  <  )
)
2412, 23ax-mp 10 . 2  |-  ( normop `  T )  =  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( normh `  ( T `  x ) ) ) } ,  RR* ,  <  )
2512ffvelrni 5625 . . 3  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
26 normcl 21696 . . 3  |-  ( ( T `  x )  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  RR )
2725, 26syl 17 . 2  |-  ( x  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  RR )
2810fveq2i 5488 . . 3  |-  ( normh `  ( T `  0h ) )  =  (
normh `  0h )
29 norm0 21699 . . 3  |-  ( normh `  0h )  =  0
3028, 29eqtri 2304 . 2  |-  ( normh `  ( T `  0h ) )  =  0
31 rpcn 10357 . . . . 5  |-  ( ( y  /  2 )  e.  RR+  ->  ( y  /  2 )  e.  CC )
329lnopmuli 22544 . . . . 5  |-  ( ( ( y  /  2
)  e.  CC  /\  x  e.  ~H )  ->  ( T `  (
( y  /  2
)  .h  x ) )  =  ( ( y  /  2 )  .h  ( T `  x ) ) )
3331, 32sylan 459 . . . 4  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( T `  ( (
y  /  2 )  .h  x ) )  =  ( ( y  /  2 )  .h  ( T `  x
) ) )
3433fveq2d 5489 . . 3  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( normh `  ( T `  ( ( y  / 
2 )  .h  x
) ) )  =  ( normh `  ( (
y  /  2 )  .h  ( T `  x ) ) ) )
35 norm-iii 21711 . . . 4  |-  ( ( ( y  /  2
)  e.  CC  /\  ( T `  x )  e.  ~H )  -> 
( normh `  ( (
y  /  2 )  .h  ( T `  x ) ) )  =  ( ( abs `  ( y  /  2
) )  x.  ( normh `  ( T `  x ) ) ) )
3631, 25, 35syl2an 465 . . 3  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( normh `  ( ( y  /  2 )  .h  ( T `  x
) ) )  =  ( ( abs `  (
y  /  2 ) )  x.  ( normh `  ( T `  x
) ) ) )
37 rpre 10355 . . . . . 6  |-  ( ( y  /  2 )  e.  RR+  ->  ( y  /  2 )  e.  RR )
38 rpge0 10361 . . . . . 6  |-  ( ( y  /  2 )  e.  RR+  ->  0  <_ 
( y  /  2
) )
3937, 38absidd 11899 . . . . 5  |-  ( ( y  /  2 )  e.  RR+  ->  ( abs `  ( y  /  2
) )  =  ( y  /  2 ) )
4039adantr 453 . . . 4  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( abs `  ( y  / 
2 ) )  =  ( y  /  2
) )
4140oveq1d 5834 . . 3  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( abs `  (
y  /  2 ) )  x.  ( normh `  ( T `  x
) ) )  =  ( ( y  / 
2 )  x.  ( normh `  ( T `  x ) ) ) )
4234, 36, 413eqtrrd 2321 . 2  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( y  /  2
)  x.  ( normh `  ( T `  x
) ) )  =  ( normh `  ( T `  ( ( y  / 
2 )  .h  x
) ) ) )
4322, 24, 27, 30, 42nmcexi 22598 1  |-  ( normop `  T )  e.  RR
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   {cab 2270   A.wral 2544   E.wrex 2545   class class class wbr 4024   -->wf 5217   ` cfv 5221  (class class class)co 5819   supcsup 7188   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    x. cmul 8737   RR*cxr 8861    < clt 8862    <_ cle 8863    / cdiv 9418   2c2 9790   RR+crp 10349   abscabs 11713   ~Hchil 21491    .h csm 21493   normhcno 21495   0hc0v 21496    -h cmv 21497   normopcnop 21517   ConOpccop 21518   LinOpclo 21519
This theorem is referenced by:  nmcoplbi  22600  nmcopex  22601  cnlnadjlem2  22640  cnlnadjlem7  22645  cnlnadjlem8  22646
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-hilex 21571  ax-hfvadd 21572  ax-hvass 21574  ax-hv0cl 21575  ax-hvaddid 21576  ax-hfvmul 21577  ax-hvmulid 21578  ax-hvmulass 21579  ax-hvdistr2 21581  ax-hvmul0 21582  ax-hfi 21650  ax-his1 21653  ax-his3 21655  ax-his4 21656
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-hnorm 21540  df-hvsub 21543  df-nmop 22411  df-cnop 22412  df-lnop 22413
  Copyright terms: Public domain W3C validator