HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcoplb Unicode version

Theorem nmcoplb 22606
Description: A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmcoplb  |-  ( ( T  e.  LinOp  /\  T  e.  ConOp  /\  A  e.  ~H )  ->  ( normh `  ( T `  A
) )  <_  (
( normop `  T )  x.  ( normh `  A )
) )

Proof of Theorem nmcoplb
StepHypRef Expression
1 elin 3359 . . 3  |-  ( T  e.  ( LinOp  i^i  ConOp )  <-> 
( T  e.  LinOp  /\  T  e.  ConOp ) )
2 fveq1 5485 . . . . . . . 8  |-  ( T  =  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
)  ->  ( T `  A )  =  ( if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H ) ) `  A ) )
32fveq2d 5490 . . . . . . 7  |-  ( T  =  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
)  ->  ( normh `  ( T `  A
) )  =  (
normh `  ( if ( T  e.  ( LinOp  i^i  ConOp ) ,  T , 
(  _I  |`  ~H )
) `  A )
) )
4 fveq2 5486 . . . . . . . 8  |-  ( T  =  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
)  ->  ( normop `  T
)  =  ( normop `  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H ) ) ) )
54oveq1d 5835 . . . . . . 7  |-  ( T  =  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
)  ->  ( ( normop `  T )  x.  ( normh `  A ) )  =  ( ( normop `  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H ) ) )  x.  ( normh `  A
) ) )
63, 5breq12d 4037 . . . . . 6  |-  ( T  =  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
)  ->  ( ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) )  <->  ( normh `  ( if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
) `  A )
)  <_  ( ( normop `  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H ) ) )  x.  ( normh `  A
) ) ) )
76imbi2d 307 . . . . 5  |-  ( T  =  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
)  ->  ( ( A  e.  ~H  ->  (
normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )  <-> 
( A  e.  ~H  ->  ( normh `  ( if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
) `  A )
)  <_  ( ( normop `  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H ) ) )  x.  ( normh `  A
) ) ) ) )
8 idlnop 22568 . . . . . . . . . 10  |-  (  _I  |`  ~H )  e.  LinOp
9 idcnop 22557 . . . . . . . . . 10  |-  (  _I  |`  ~H )  e.  ConOp
10 elin 3359 . . . . . . . . . 10  |-  ( (  _I  |`  ~H )  e.  ( LinOp  i^i  ConOp )  <->  ( (  _I  |`  ~H )  e. 
LinOp  /\  (  _I  |`  ~H )  e.  ConOp ) )
118, 9, 10mpbir2an 886 . . . . . . . . 9  |-  (  _I  |`  ~H )  e.  (
LinOp  i^i  ConOp )
1211elimel 3618 . . . . . . . 8  |-  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T , 
(  _I  |`  ~H )
)  e.  ( LinOp  i^i  ConOp )
13 elin 3359 . . . . . . . 8  |-  ( if ( T  e.  (
LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
)  e.  ( LinOp  i^i  ConOp )  <->  ( if ( T  e.  ( LinOp  i^i  ConOp ) ,  T , 
(  _I  |`  ~H )
)  e.  LinOp  /\  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
)  e.  ConOp ) )
1412, 13mpbi 199 . . . . . . 7  |-  ( if ( T  e.  (
LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp  /\  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H )
)  e.  ConOp )
1514simpli 444 . . . . . 6  |-  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T , 
(  _I  |`  ~H )
)  e.  LinOp
1614simpri 448 . . . . . 6  |-  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T , 
(  _I  |`  ~H )
)  e.  ConOp
1715, 16nmcoplbi 22604 . . . . 5  |-  ( A  e.  ~H  ->  ( normh `  ( if ( T  e.  ( LinOp  i^i  ConOp ) ,  T , 
(  _I  |`  ~H )
) `  A )
)  <_  ( ( normop `  if ( T  e.  ( LinOp  i^i  ConOp ) ,  T ,  (  _I  |`  ~H ) ) )  x.  ( normh `  A
) ) )
187, 17dedth 3607 . . . 4  |-  ( T  e.  ( LinOp  i^i  ConOp )  ->  ( A  e. 
~H  ->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
1918imp 418 . . 3  |-  ( ( T  e.  ( LinOp  i^i  ConOp )  /\  A  e. 
~H )  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
201, 19sylanbr 459 . 2  |-  ( ( ( T  e.  LinOp  /\  T  e.  ConOp )  /\  A  e.  ~H )  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
21203impa 1146 1  |-  ( ( T  e.  LinOp  /\  T  e.  ConOp  /\  A  e.  ~H )  ->  ( normh `  ( T `  A
) )  <_  (
( normop `  T )  x.  ( normh `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    i^i cin 3152   ifcif 3566   class class class wbr 4024    _I cid 4303    |` cres 4690   ` cfv 5221  (class class class)co 5820    x. cmul 8738    <_ cle 8864   ~Hchil 21495   normhcno 21499   normopcnop 21521   ConOpccop 21522   LinOpclo 21523
This theorem is referenced by:  lnopconi  22610
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-hilex 21575  ax-hfvadd 21576  ax-hvcom 21577  ax-hvass 21578  ax-hv0cl 21579  ax-hvaddid 21580  ax-hfvmul 21581  ax-hvmulid 21582  ax-hvmulass 21583  ax-hvdistr1 21584  ax-hvdistr2 21585  ax-hvmul0 21586  ax-hfi 21654  ax-his1 21657  ax-his2 21658  ax-his3 21659  ax-his4 21660
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-seq 11043  df-exp 11101  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-grpo 20852  df-gid 20853  df-ablo 20943  df-vc 21096  df-nv 21142  df-va 21145  df-ba 21146  df-sm 21147  df-0v 21148  df-nmcv 21150  df-hnorm 21544  df-hba 21545  df-hvsub 21547  df-nmop 22415  df-cnop 22416  df-lnop 22417  df-unop 22419
  Copyright terms: Public domain W3C validator