HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcoplbi Unicode version

Theorem nmcoplbi 22600
Description: A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1  |-  T  e. 
LinOp
nmcopex.2  |-  T  e. 
ConOp
Assertion
Ref Expression
nmcoplbi  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )

Proof of Theorem nmcoplbi
StepHypRef Expression
1 0le0 9822 . . . . 5  |-  0  <_  0
21a1i 12 . . . 4  |-  ( A  =  0h  ->  0  <_  0 )
3 fveq2 5485 . . . . . . 7  |-  ( A  =  0h  ->  ( T `  A )  =  ( T `  0h ) )
4 nmcopex.1 . . . . . . . 8  |-  T  e. 
LinOp
54lnop0i 22542 . . . . . . 7  |-  ( T `
 0h )  =  0h
63, 5syl6eq 2332 . . . . . 6  |-  ( A  =  0h  ->  ( T `  A )  =  0h )
76fveq2d 5489 . . . . 5  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  =  ( normh `  0h )
)
8 norm0 21699 . . . . 5  |-  ( normh `  0h )  =  0
97, 8syl6eq 2332 . . . 4  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  =  0 )
10 fveq2 5485 . . . . . . 7  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
1110, 8syl6eq 2332 . . . . . 6  |-  ( A  =  0h  ->  ( normh `  A )  =  0 )
1211oveq2d 5835 . . . . 5  |-  ( A  =  0h  ->  (
( normop `  T )  x.  ( normh `  A )
)  =  ( (
normop `  T )  x.  0 ) )
13 nmcopex.2 . . . . . . . 8  |-  T  e. 
ConOp
144, 13nmcopexi 22599 . . . . . . 7  |-  ( normop `  T )  e.  RR
1514recni 8844 . . . . . 6  |-  ( normop `  T )  e.  CC
1615mul01i 8997 . . . . 5  |-  ( (
normop `  T )  x.  0 )  =  0
1712, 16syl6eq 2332 . . . 4  |-  ( A  =  0h  ->  (
( normop `  T )  x.  ( normh `  A )
)  =  0 )
182, 9, 173brtr4d 4054 . . 3  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
1918adantl 454 . 2  |-  ( ( A  e.  ~H  /\  A  =  0h )  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
20 normcl 21696 . . . . . . . . 9  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
2120adantr 453 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  RR )
22 normne0 21701 . . . . . . . . 9  |-  ( A  e.  ~H  ->  (
( normh `  A )  =/=  0  <->  A  =/=  0h )
)
2322biimpar 473 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =/=  0 )
2421, 23rereccld 9582 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  RR )
25 normgt0 21698 . . . . . . . . . 10  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
2625biimpa 472 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( normh `  A ) )
2721, 26recgt0d 9686 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( 1  /  ( normh `  A
) ) )
28 0re 8833 . . . . . . . . 9  |-  0  e.  RR
29 ltle 8905 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
3028, 29mpan 653 . . . . . . . 8  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
3124, 27, 30sylc 58 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( 1  /  ( normh `  A
) ) )
3224, 31absidd 11899 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
1  /  ( normh `  A ) ) )  =  ( 1  / 
( normh `  A )
) )
3332oveq1d 5834 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  ( T `  A )
) ) )
3424recnd 8856 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  CC )
35 simpl 445 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A  e.  ~H )
364lnopmuli 22544 . . . . . . . 8  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  / 
( normh `  A )
)  .h  ( T `
 A ) ) )
3734, 35, 36syl2anc 644 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  (
( 1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) )
3837fveq2d 5489 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  =  (
normh `  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) ) )
394lnopfi 22541 . . . . . . . . 9  |-  T : ~H
--> ~H
4039ffvelrni 5625 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( T `  A )  e.  ~H )
4140adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  A
)  e.  ~H )
42 norm-iii 21711 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  ( T `  A )  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
4334, 41, 42syl2anc 644 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  ( T `  A
) ) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
4438, 43eqtrd 2316 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
45 normcl 21696 . . . . . . . . 9  |-  ( ( T `  A )  e.  ~H  ->  ( normh `  ( T `  A ) )  e.  RR )
4640, 45syl 17 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  e.  RR )
4746adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  e.  RR )
4847recnd 8856 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  e.  CC )
4921recnd 8856 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  CC )
5048, 49, 23divrec2d 9535 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( normh `  ( T `  A
) ) ) )
5133, 44, 503eqtr4rd 2327 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  =  ( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) ) )
52 hvmulcl 21585 . . . . . 6  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
5334, 35, 52syl2anc 644 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H )
54 normcl 21696 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  .h  A )  e. 
~H  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
5553, 54syl 17 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
56 norm1 21820 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
57 eqle 8918 . . . . . 6  |-  ( ( ( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR  /\  ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  1 )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
5855, 56, 57syl2anc 644 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1 )
59 nmoplb 22479 . . . . . 6  |-  ( ( T : ~H --> ~H  /\  ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( normh `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normop `  T
) )
6039, 59mp3an1 1266 . . . . 5  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( normh `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normop `  T
) )
6153, 58, 60syl2anc 644 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  <_  ( normop `  T ) )
6251, 61eqbrtrd 4044 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normop `  T )
)
6314a1i 12 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normop `  T )  e.  RR )
64 ledivmul2 9628 . . . 4  |-  ( ( ( normh `  ( T `  A ) )  e.  RR  /\  ( normop `  T )  e.  RR  /\  ( ( normh `  A
)  e.  RR  /\  0  <  ( normh `  A
) ) )  -> 
( ( ( normh `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normop `  T
)  <->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
6547, 63, 21, 26, 64syl112anc 1188 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( normh `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normop `  T
)  <->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
6662, 65mpbid 203 . 2  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
6719, 66pm2.61dane 2525 1  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   class class class wbr 4024   -->wf 5217   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    x. cmul 8737    < clt 8862    <_ cle 8863    / cdiv 9418   abscabs 11713   ~Hchil 21491    .h csm 21493   normhcno 21495   0hc0v 21496   normopcnop 21517   ConOpccop 21518   LinOpclo 21519
This theorem is referenced by:  nmcoplb  22602  cnlnadjlem2  22640  cnlnadjlem7  22645
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-hilex 21571  ax-hfvadd 21572  ax-hvcom 21573  ax-hvass 21574  ax-hv0cl 21575  ax-hvaddid 21576  ax-hfvmul 21577  ax-hvmulid 21578  ax-hvmulass 21579  ax-hvdistr1 21580  ax-hvdistr2 21581  ax-hvmul0 21582  ax-hfi 21650  ax-his1 21653  ax-his2 21654  ax-his3 21655  ax-his4 21656
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-grpo 20850  df-gid 20851  df-ablo 20941  df-vc 21094  df-nv 21140  df-va 21143  df-ba 21144  df-sm 21145  df-0v 21146  df-nmcv 21148  df-hnorm 21540  df-hba 21541  df-hvsub 21543  df-nmop 22411  df-cnop 22412  df-lnop 22413
  Copyright terms: Public domain W3C validator