HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcoplbi Unicode version

Theorem nmcoplbi 22533
Description: A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1  |-  T  e. 
LinOp
nmcopex.2  |-  T  e. 
ConOp
Assertion
Ref Expression
nmcoplbi  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )

Proof of Theorem nmcoplbi
StepHypRef Expression
1 0le0 9760 . . . . 5  |-  0  <_  0
21a1i 12 . . . 4  |-  ( A  =  0h  ->  0  <_  0 )
3 fveq2 5423 . . . . . . 7  |-  ( A  =  0h  ->  ( T `  A )  =  ( T `  0h ) )
4 nmcopex.1 . . . . . . . 8  |-  T  e. 
LinOp
54lnop0i 22475 . . . . . . 7  |-  ( T `
 0h )  =  0h
63, 5syl6eq 2304 . . . . . 6  |-  ( A  =  0h  ->  ( T `  A )  =  0h )
76fveq2d 5427 . . . . 5  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  =  ( normh `  0h )
)
8 norm0 21632 . . . . 5  |-  ( normh `  0h )  =  0
97, 8syl6eq 2304 . . . 4  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  =  0 )
10 fveq2 5423 . . . . . . 7  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
1110, 8syl6eq 2304 . . . . . 6  |-  ( A  =  0h  ->  ( normh `  A )  =  0 )
1211oveq2d 5773 . . . . 5  |-  ( A  =  0h  ->  (
( normop `  T )  x.  ( normh `  A )
)  =  ( (
normop `  T )  x.  0 ) )
13 nmcopex.2 . . . . . . . 8  |-  T  e. 
ConOp
144, 13nmcopexi 22532 . . . . . . 7  |-  ( normop `  T )  e.  RR
1514recni 8782 . . . . . 6  |-  ( normop `  T )  e.  CC
1615mul01i 8935 . . . . 5  |-  ( (
normop `  T )  x.  0 )  =  0
1712, 16syl6eq 2304 . . . 4  |-  ( A  =  0h  ->  (
( normop `  T )  x.  ( normh `  A )
)  =  0 )
182, 9, 173brtr4d 3993 . . 3  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
1918adantl 454 . 2  |-  ( ( A  e.  ~H  /\  A  =  0h )  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
20 normcl 21629 . . . . . . . . 9  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
2120adantr 453 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  RR )
22 normne0 21634 . . . . . . . . 9  |-  ( A  e.  ~H  ->  (
( normh `  A )  =/=  0  <->  A  =/=  0h )
)
2322biimpar 473 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =/=  0 )
2421, 23rereccld 9520 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  RR )
25 normgt0 21631 . . . . . . . . . 10  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
2625biimpa 472 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( normh `  A ) )
2721, 26recgt0d 9624 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( 1  /  ( normh `  A
) ) )
28 0re 8771 . . . . . . . . 9  |-  0  e.  RR
29 ltle 8843 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
3028, 29mpan 654 . . . . . . . 8  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
3124, 27, 30sylc 58 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( 1  /  ( normh `  A
) ) )
3224, 31absidd 11835 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
1  /  ( normh `  A ) ) )  =  ( 1  / 
( normh `  A )
) )
3332oveq1d 5772 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  ( T `  A )
) ) )
3424recnd 8794 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  CC )
35 simpl 445 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A  e.  ~H )
364lnopmuli 22477 . . . . . . . 8  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  / 
( normh `  A )
)  .h  ( T `
 A ) ) )
3734, 35, 36syl2anc 645 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  (
( 1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) )
3837fveq2d 5427 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  =  (
normh `  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) ) )
394lnopfi 22474 . . . . . . . . 9  |-  T : ~H
--> ~H
4039ffvelrni 5563 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( T `  A )  e.  ~H )
4140adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  A
)  e.  ~H )
42 norm-iii 21644 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  ( T `  A )  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
4334, 41, 42syl2anc 645 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  ( T `  A
) ) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
4438, 43eqtrd 2288 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
45 normcl 21629 . . . . . . . . 9  |-  ( ( T `  A )  e.  ~H  ->  ( normh `  ( T `  A ) )  e.  RR )
4640, 45syl 17 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  e.  RR )
4746adantr 453 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  e.  RR )
4847recnd 8794 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  e.  CC )
4921recnd 8794 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  CC )
5048, 49, 23divrec2d 9473 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( normh `  ( T `  A
) ) ) )
5133, 44, 503eqtr4rd 2299 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  =  ( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) ) )
52 hvmulcl 21518 . . . . . 6  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
5334, 35, 52syl2anc 645 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H )
54 normcl 21629 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  .h  A )  e. 
~H  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
5553, 54syl 17 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
56 norm1 21753 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
57 eqle 8856 . . . . . 6  |-  ( ( ( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR  /\  ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  1 )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
5855, 56, 57syl2anc 645 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1 )
59 nmoplb 22412 . . . . . 6  |-  ( ( T : ~H --> ~H  /\  ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( normh `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normop `  T
) )
6039, 59mp3an1 1269 . . . . 5  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( normh `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normop `  T
) )
6153, 58, 60syl2anc 645 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  <_  ( normop `  T ) )
6251, 61eqbrtrd 3983 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normop `  T )
)
6314a1i 12 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normop `  T )  e.  RR )
64 ledivmul2 9566 . . . 4  |-  ( ( ( normh `  ( T `  A ) )  e.  RR  /\  ( normop `  T )  e.  RR  /\  ( ( normh `  A
)  e.  RR  /\  0  <  ( normh `  A
) ) )  -> 
( ( ( normh `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normop `  T
)  <->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
6547, 63, 21, 26, 64syl112anc 1191 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( normh `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normop `  T
)  <->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
6662, 65mpbid 203 . 2  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
6719, 66pm2.61dane 2497 1  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963   -->wf 4634   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671    x. cmul 8675    < clt 8800    <_ cle 8801    / cdiv 9356   abscabs 11649   ~Hchil 21424    .h csm 21426   normhcno 21428   0hc0v 21429   normopcnop 21450   ConOpccop 21451   LinOpclo 21452
This theorem is referenced by:  nmcoplb  22535  cnlnadjlem2  22573  cnlnadjlem7  22578
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-hilex 21504  ax-hfvadd 21505  ax-hvcom 21506  ax-hvass 21507  ax-hv0cl 21508  ax-hvaddid 21509  ax-hfvmul 21510  ax-hvmulid 21511  ax-hvmulass 21512  ax-hvdistr1 21513  ax-hvdistr2 21514  ax-hvmul0 21515  ax-hfi 21583  ax-his1 21586  ax-his2 21587  ax-his3 21588  ax-his4 21589
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-sup 7127  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-n0 9898  df-z 9957  df-uz 10163  df-rp 10287  df-seq 10978  df-exp 11036  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-grpo 20783  df-gid 20784  df-ablo 20874  df-vc 21027  df-nv 21073  df-va 21076  df-ba 21077  df-sm 21078  df-0v 21079  df-nmcv 21081  df-hnorm 21473  df-hba 21474  df-hvsub 21476  df-nmop 22344  df-cnop 22345  df-lnop 22346
  Copyright terms: Public domain W3C validator