MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmo0 Unicode version

Theorem nmo0 18076
Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1  |-  N  =  ( S normOp T )
nmo0.2  |-  V  =  ( Base `  S
)
nmo0.3  |-  .0.  =  ( 0g `  T )
Assertion
Ref Expression
nmo0  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  =  0 )

Proof of Theorem nmo0
StepHypRef Expression
1 nmo0.1 . . 3  |-  N  =  ( S normOp T )
2 nmo0.2 . . 3  |-  V  =  ( Base `  S
)
3 eqid 2253 . . 3  |-  ( norm `  S )  =  (
norm `  S )
4 eqid 2253 . . 3  |-  ( norm `  T )  =  (
norm `  T )
5 eqid 2253 . . 3  |-  ( 0g
`  S )  =  ( 0g `  S
)
6 simpl 445 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  S  e. NrmGrp )
7 simpr 449 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  T  e. NrmGrp )
8 ngpgrp 17953 . . . 4  |-  ( S  e. NrmGrp  ->  S  e.  Grp )
9 ngpgrp 17953 . . . 4  |-  ( T  e. NrmGrp  ->  T  e.  Grp )
10 nmo0.3 . . . . 5  |-  .0.  =  ( 0g `  T )
1110, 20ghm 14532 . . . 4  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )
128, 9, 11syl2an 465 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )
13 0re 8718 . . . 4  |-  0  e.  RR
1413a1i 12 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  0  e.  RR )
15 0le0 9707 . . . 4  |-  0  <_  0
1615a1i 12 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  0  <_  0 )
17 fvex 5391 . . . . . . . . 9  |-  ( 0g
`  T )  e. 
_V
1810, 17eqeltri 2323 . . . . . . . 8  |-  .0.  e.  _V
1918fvconst2 5581 . . . . . . 7  |-  ( x  e.  V  ->  (
( V  X.  {  .0.  } ) `  x
)  =  .0.  )
2019ad2antrl 711 . . . . . 6  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( V  X.  {  .0.  } ) `  x )  =  .0.  )
2120fveq2d 5381 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( ( V  X.  {  .0.  }
) `  x )
)  =  ( (
norm `  T ) `  .0.  ) )
224, 10nm0 17980 . . . . . 6  |-  ( T  e. NrmGrp  ->  ( ( norm `  T ) `  .0.  )  =  0 )
2322ad2antlr 710 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  .0.  )  =  0 )
2421, 23eqtrd 2285 . . . 4  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( ( V  X.  {  .0.  }
) `  x )
)  =  0 )
252, 3nmcl 17969 . . . . . . . 8  |-  ( ( S  e. NrmGrp  /\  x  e.  V )  ->  (
( norm `  S ) `  x )  e.  RR )
2625ad2ant2r 730 . . . . . . 7  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  S
) `  x )  e.  RR )
2726recnd 8741 . . . . . 6  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  S
) `  x )  e.  CC )
2827mul02d 8890 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( 0  x.  (
( norm `  S ) `  x ) )  =  0 )
2915, 28syl5breqr 3956 . . . 4  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
0  <_  ( 0  x.  ( ( norm `  S ) `  x
) ) )
3024, 29eqbrtrd 3940 . . 3  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( ( V  X.  {  .0.  }
) `  x )
)  <_  ( 0  x.  ( ( norm `  S ) `  x
) ) )
311, 2, 3, 4, 5, 6, 7, 12, 14, 16, 30nmolb2d 18059 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  <_ 
0 )
321nmoge0 18062 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )  ->  0  <_  ( N `  ( V  X.  {  .0.  } ) ) )
3312, 32mpd3an3 1283 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  0  <_  ( N `  ( V  X.  {  .0.  }
) ) )
341nmocl 18061 . . . 4  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )  ->  ( N `  ( V  X.  {  .0.  } ) )  e.  RR* )
3512, 34mpd3an3 1283 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  e. 
RR* )
36 0xr 8758 . . 3  |-  0  e.  RR*
37 xrletri3 10365 . . 3  |-  ( ( ( N `  ( V  X.  {  .0.  }
) )  e.  RR*  /\  0  e.  RR* )  ->  ( ( N `  ( V  X.  {  .0.  } ) )  =  0  <-> 
( ( N `  ( V  X.  {  .0.  } ) )  <_  0  /\  0  <_  ( N `
 ( V  X.  {  .0.  } ) ) ) ) )
3835, 36, 37sylancl 646 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( ( N `  ( V  X.  {  .0.  } ) )  =  0  <->  (
( N `  ( V  X.  {  .0.  }
) )  <_  0  /\  0  <_  ( N `
 ( V  X.  {  .0.  } ) ) ) ) )
3931, 33, 38mpbir2and 893 1  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   _Vcvv 2727   {csn 3544   class class class wbr 3920    X. cxp 4578   ` cfv 4592  (class class class)co 5710   RRcr 8616   0cc0 8617    x. cmul 8622   RR*cxr 8746    <_ cle 8748   Basecbs 13022   0gc0g 13274   Grpcgrp 14197    GrpHom cghm 14515   normcnm 17931  NrmGrpcngp 17932   normOpcnmo 18046
This theorem is referenced by:  nmoeq0  18077  0nghm  18082  idnghm  18084
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-n0 9845  df-z 9904  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ico 10540  df-topgen 13218  df-0g 13278  df-mnd 14202  df-mhm 14250  df-grp 14324  df-ghm 14516  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-xms 17717  df-ms 17718  df-nm 17937  df-ngp 17938  df-nmo 18049
  Copyright terms: Public domain W3C validator