HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem nmo0 16395
Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1  |-  N  =  ( S normOp T )
nmo0.2  |-  V  =  ( Base `  S
)
nmo0.3  |-  .0.  =  ( 0g `  T )
Assertion
Ref Expression
nmo0  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  =  0 )

Proof of Theorem nmo0
StepHypRef Expression
1 nmo0.1 . . 3  |-  N  =  ( S normOp T )
2 nmo0.2 . . 3  |-  V  =  ( Base `  S
)
3 eqid 2062 . . 3  |-  ( norm `  S )  =  (
norm `  S )
4 eqid 2062 . . 3  |-  ( norm `  T )  =  (
norm `  T )
5 eqid 2062 . . 3  |-  ( 0g
`  S )  =  ( 0g `  S
)
6 simpl 436 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  S  e. NrmGrp )
7 simpr 440 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  T  e. NrmGrp )
8 ngpgrp 16272 . . . 4  |-  ( S  e. NrmGrp  ->  S  e.  Grp )
9 ngpgrp 16272 . . . 4  |-  ( T  e. NrmGrp  ->  T  e.  Grp )
10 nmo0.3 . . . . 5  |-  .0.  =  ( 0g `  T )
1110, 20ghm 12872 . . . 4  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )
128, 9, 11syl2an 456 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )
13 0re 8265 . . . 4  |-  0  e.  RR
1413a1i 10 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  0  e.  RR )
1513leidi 8541 . . . 4  |-  0  <_  0
1615a1i 10 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  0  <_  0 )
17 fvex 5055 . . . . . . . . 9  |-  ( 0g
`  T )  e. 
_V
1810, 17eqeltri 2132 . . . . . . . 8  |-  .0.  e.  _V
1918fvconst2 5253 . . . . . . 7  |-  ( x  e.  V  ->  (
( V  X.  {  .0.  } ) `  x
)  =  .0.  )
2019ad2antrl 699 . . . . . 6  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( V  X.  {  .0.  } ) `  x )  =  .0.  )
2120fveq2d 5045 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( ( V  X.  {  .0.  }
) `  x )
)  =  ( (
norm `  T ) `  .0.  ) )
224, 10nm0 16299 . . . . . 6  |-  ( T  e. NrmGrp  ->  ( ( norm `  T ) `  .0.  )  =  0 )
2322ad2antlr 698 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  .0.  )  =  0 )
2421, 23eqtrd 2094 . . . 4  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( ( V  X.  {  .0.  }
) `  x )
)  =  0 )
252, 3nmcl 16288 . . . . . . . 8  |-  ( ( S  e. NrmGrp  /\  x  e.  V )  ->  (
( norm `  S ) `  x )  e.  RR )
2625ad2ant2r 702 . . . . . . 7  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  S
) `  x )  e.  RR )
2726recnd 8245 . . . . . 6  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  S
) `  x )  e.  CC )
28 mul02 8372 . . . . . 6  |-  ( ( ( norm `  S
) `  x )  e.  CC  ->  ( 0  x.  ( ( norm `  S ) `  x
) )  =  0 )
2927, 28syl 15 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( 0  x.  (
( norm `  S ) `  x ) )  =  0 )
3015, 29syl5breqr 3620 . . . 4  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
0  <_  ( 0  x.  ( ( norm `  S ) `  x
) ) )
3124, 30eqbrtrd 3604 . . 3  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( ( V  X.  {  .0.  }
) `  x )
)  <_  ( 0  x.  ( ( norm `  S ) `  x
) ) )
321, 2, 3, 4, 5, 6, 7, 12, 14, 16, 31nmolb2d 16378 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  <_ 
0 )
331nmoge0 16381 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )  ->  0  <_  ( N `  ( V  X.  {  .0.  } ) ) )
3412, 33mpd3an3 1234 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  0  <_  ( N `  ( V  X.  {  .0.  }
) ) )
351nmocl 16380 . . . 4  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )  ->  ( N `  ( V  X.  {  .0.  } ) )  e.  RR* )
3612, 35mpd3an3 1234 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  e. 
RR* )
37 0xr 8280 . . 3  |-  0  e.  RR*
38 xrletri3 9516 . . 3  |-  ( ( ( N `  ( V  X.  {  .0.  }
) )  e.  RR*  /\  0  e.  RR* )  ->  ( ( N `  ( V  X.  {  .0.  } ) )  =  0  <-> 
( ( N `  ( V  X.  {  .0.  } ) )  <_  0  /\  0  <_  ( N `
 ( V  X.  {  .0.  } ) ) ) ) )
3936, 37, 38sylancl 635 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( ( N `  ( V  X.  {  .0.  } ) )  =  0  <->  (
( N `  ( V  X.  {  .0.  }
) )  <_  0  /\  0  <_  ( N `
 ( V  X.  {  .0.  } ) ) ) ) )
4032, 34, 39mpbir2and 848 1  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 174    /\ wa 356    = wceq 1518    e. wcel 1520    =/= wne 2180   _Vcvv 2473   {csn 3253   class class class wbr 3584    X. cxp 4252   ` cfv 4266  (class class class)co 5356   CCcc 8151   RRcr 8152   0cc0 8153    x. cmul 8158    <_ cle 8266   RR*cxr 8269   Basecbs 11718   0gc0g 11950   Grpcgrp 12379    GrpHom cghm 12855   normcnm 16250  NrmGrpcngp 16251   normOpcnmo 16365
This theorem is referenced by:  nmoeq0  16396  0nghm  16401  idnghm  16403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1440  ax-6 1441  ax-7 1442  ax-gen 1443  ax-8 1522  ax-11 1523  ax-13 1524  ax-14 1525  ax-17 1527  ax-12o 1560  ax-10 1574  ax-9 1580  ax-4 1587  ax-16 1773  ax-ext 2044  ax-rep 3689  ax-sep 3699  ax-nul 3707  ax-pow 3743  ax-pr 3767  ax-un 4059  ax-cnex 8208  ax-resscn 8209  ax-1cn 8210  ax-icn 8211  ax-addcl 8212  ax-addrcl 8213  ax-mulcl 8214  ax-mulrcl 8215  ax-mulcom 8216  ax-addass 8217  ax-mulass 8218  ax-distr 8219  ax-i2m1 8220  ax-1ne0 8221  ax-1rid 8222  ax-rnegex 8223  ax-rrecex 8224  ax-cnre 8225  ax-pre-lttri 8226  ax-pre-lttrn 8227  ax-pre-ltadd 8228  ax-pre-mulgt0 8229  ax-pre-sup 8230
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3or 895  df-3an 896  df-tru 1257  df-ex 1445  df-sb 1734  df-eu 1956  df-mo 1957  df-clab 2050  df-cleq 2055  df-clel 2058  df-ne 2182  df-nel 2183  df-ral 2276  df-rex 2277  df-reu 2278  df-rab 2279  df-v 2475  df-sbc 2649  df-csb 2731  df-dif 2794  df-un 2796  df-in 2798  df-ss 2802  df-pss 2804  df-nul 3071  df-if 3180  df-pw 3241  df-sn 3259  df-pr 3260  df-tp 3261  df-op 3262  df-uni 3423  df-iun 3500  df-br 3585  df-opab 3639  df-mpt 3640  df-tr 3672  df-eprel 3854  df-id 3858  df-po 3863  df-so 3864  df-fr 3901  df-we 3903  df-ord 3944  df-on 3945  df-lim 3946  df-suc 3947  df-om 4222  df-xp 4268  df-rel 4269  df-cnv 4270  df-co 4271  df-dm 4272  df-rn 4273  df-res 4274  df-ima 4275  df-fun 4276  df-fn 4277  df-f 4278  df-f1 4279  df-fo 4280  df-f1o 4281  df-fv 4282  df-ov 5359  df-oprab 5360  df-mpt2 5361  df-1st 5610  df-2nd 5611  df-iota 5766  df-recs 5839  df-rdg 5874  df-er 6111  df-map 6215  df-en 6298  df-dom 6299  df-sdom 6300  df-riota 6464  df-sup 6672  df-pnf 8271  df-mnf 8272  df-xr 8273  df-ltxr 8274  df-le 8275  df-sub 8408  df-neg 8409  df-div 8640  df-n 8883  df-2 8930  df-n0 9076  df-z 9128  df-uz 9326  df-q 9411  df-rp 9448  df-xneg 9482  df-xadd 9483  df-xmul 9484  df-ico 9688  df-topgen 11898  df-0g 11954  df-mnd 12384  df-mhm 12435  df-grp 12664  df-ghm 12856  df-xmet 14543  df-met 14544  df-bl 14545  df-mopn 14546  df-top 14805  df-bases 14807  df-topon 14808  df-topsp 14809  df-xms 16035  df-ms 16036  df-nm 16256  df-ngp 16257  df-nmo 16368
Copyright terms: Public domain