MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmo0 Unicode version

Theorem nmo0 16953
Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1  |-  N  =  ( S normOp T )
nmo0.2  |-  V  =  ( Base `  S
)
nmo0.3  |-  .0.  =  ( 0g `  T )
Assertion
Ref Expression
nmo0  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  =  0 )

Proof of Theorem nmo0
StepHypRef Expression
1 nmo0.1 . . 3  |-  N  =  ( S normOp T )
2 nmo0.2 . . 3  |-  V  =  ( Base `  S
)
3 eqid 2069 . . 3  |-  ( norm `  S )  =  (
norm `  S )
4 eqid 2069 . . 3  |-  ( norm `  T )  =  (
norm `  T )
5 eqid 2069 . . 3  |-  ( 0g
`  S )  =  ( 0g `  S
)
6 simpl 437 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  S  e. NrmGrp )
7 simpr 441 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  T  e. NrmGrp )
8 ngpgrp 16830 . . . 4  |-  ( S  e. NrmGrp  ->  S  e.  Grp )
9 ngpgrp 16830 . . . 4  |-  ( T  e. NrmGrp  ->  T  e.  Grp )
10 nmo0.3 . . . . 5  |-  .0.  =  ( 0g `  T )
1110, 20ghm 13427 . . . 4  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )
128, 9, 11syl2an 457 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )
13 0re 8268 . . . 4  |-  0  e.  RR
1413a1i 10 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  0  e.  RR )
15 0le0 9218 . . . 4  |-  0  <_  0
1615a1i 10 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  0  <_  0 )
17 fvex 5068 . . . . . . . . 9  |-  ( 0g
`  T )  e. 
_V
1810, 17eqeltri 2139 . . . . . . . 8  |-  .0.  e.  _V
1918fvconst2 5267 . . . . . . 7  |-  ( x  e.  V  ->  (
( V  X.  {  .0.  } ) `  x
)  =  .0.  )
2019ad2antrl 700 . . . . . 6  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( V  X.  {  .0.  } ) `  x )  =  .0.  )
2120fveq2d 5058 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( ( V  X.  {  .0.  }
) `  x )
)  =  ( (
norm `  T ) `  .0.  ) )
224, 10nm0 16857 . . . . . 6  |-  ( T  e. NrmGrp  ->  ( ( norm `  T ) `  .0.  )  =  0 )
2322ad2antlr 699 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  .0.  )  =  0 )
2421, 23eqtrd 2101 . . . 4  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( ( V  X.  {  .0.  }
) `  x )
)  =  0 )
252, 3nmcl 16846 . . . . . . . 8  |-  ( ( S  e. NrmGrp  /\  x  e.  V )  ->  (
( norm `  S ) `  x )  e.  RR )
2625ad2ant2r 703 . . . . . . 7  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  S
) `  x )  e.  RR )
2726recnd 8291 . . . . . 6  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  S
) `  x )  e.  CC )
2827mul02d 8439 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( 0  x.  (
( norm `  S ) `  x ) )  =  0 )
2915, 28syl5breqr 3632 . . . 4  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
0  <_  ( 0  x.  ( ( norm `  S ) `  x
) ) )
3024, 29eqbrtrd 3616 . . 3  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( x  e.  V  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( ( V  X.  {  .0.  }
) `  x )
)  <_  ( 0  x.  ( ( norm `  S ) `  x
) ) )
311, 2, 3, 4, 5, 6, 7, 12, 14, 16, 30nmolb2d 16936 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  <_ 
0 )
321nmoge0 16939 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )  ->  0  <_  ( N `  ( V  X.  {  .0.  } ) ) )
3312, 32mpd3an3 1236 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  0  <_  ( N `  ( V  X.  {  .0.  }
) ) )
341nmocl 16938 . . . 4  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  ( V  X.  {  .0.  } )  e.  ( S  GrpHom  T ) )  ->  ( N `  ( V  X.  {  .0.  } ) )  e.  RR* )
3512, 34mpd3an3 1236 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  e. 
RR* )
36 0xr 8308 . . 3  |-  0  e.  RR*
37 xrletri3 9874 . . 3  |-  ( ( ( N `  ( V  X.  {  .0.  }
) )  e.  RR*  /\  0  e.  RR* )  ->  ( ( N `  ( V  X.  {  .0.  } ) )  =  0  <-> 
( ( N `  ( V  X.  {  .0.  } ) )  <_  0  /\  0  <_  ( N `
 ( V  X.  {  .0.  } ) ) ) ) )
3835, 36, 37sylancl 636 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( ( N `  ( V  X.  {  .0.  } ) )  =  0  <->  (
( N `  ( V  X.  {  .0.  }
) )  <_  0  /\  0  <_  ( N `
 ( V  X.  {  .0.  } ) ) ) ) )
3931, 33, 38mpbir2and 850 1  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 174    /\ wa 356    = wceq 1524    e. wcel 1526    =/= wne 2187   _Vcvv 2480   {csn 3260   class class class wbr 3596    X. cxp 4264   ` cfv 4278  (class class class)co 5370   RRcr 8167   0cc0 8168    x. cmul 8173    <_ cle 8294   RR*cxr 8297   Basecbs 12272   0gc0g 12505   Grpcgrp 12934    GrpHom cghm 13410   normcnm 16808  NrmGrpcngp 16809   normOpcnmo 16923
This theorem is referenced by:  nmoeq0  16954  0nghm  16959  idnghm  16961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1446  ax-6 1447  ax-7 1448  ax-gen 1449  ax-8 1528  ax-11 1529  ax-13 1530  ax-14 1531  ax-17 1533  ax-12o 1567  ax-10 1581  ax-9 1587  ax-4 1594  ax-16 1780  ax-ext 2051  ax-rep 3701  ax-sep 3711  ax-nul 3719  ax-pow 3755  ax-pr 3779  ax-un 4071  ax-cnex 8223  ax-resscn 8224  ax-1cn 8225  ax-icn 8226  ax-addcl 8227  ax-addrcl 8228  ax-mulcl 8229  ax-mulrcl 8230  ax-mulcom 8231  ax-addass 8232  ax-mulass 8233  ax-distr 8234  ax-i2m1 8235  ax-1ne0 8236  ax-1rid 8237  ax-rnegex 8238  ax-rrecex 8239  ax-cnre 8240  ax-pre-lttri 8241  ax-pre-lttrn 8242  ax-pre-ltadd 8243  ax-pre-mulgt0 8244  ax-pre-sup 8245
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3or 897  df-3an 898  df-tru 1259  df-ex 1451  df-sb 1741  df-eu 1963  df-mo 1964  df-clab 2057  df-cleq 2062  df-clel 2065  df-ne 2189  df-nel 2190  df-ral 2283  df-rex 2284  df-reu 2285  df-rab 2286  df-v 2482  df-sbc 2656  df-csb 2738  df-dif 2801  df-un 2803  df-in 2805  df-ss 2809  df-pss 2811  df-nul 3078  df-if 3187  df-pw 3248  df-sn 3266  df-pr 3267  df-tp 3268  df-op 3269  df-uni 3435  df-iun 3512  df-br 3597  df-opab 3651  df-mpt 3652  df-tr 3684  df-eprel 3866  df-id 3870  df-po 3875  df-so 3876  df-fr 3913  df-we 3915  df-ord 3956  df-on 3957  df-lim 3958  df-suc 3959  df-om 4234  df-xp 4280  df-rel 4281  df-cnv 4282  df-co 4283  df-dm 4284  df-rn 4285  df-res 4286  df-ima 4287  df-fun 4288  df-fn 4289  df-f 4290  df-f1 4291  df-fo 4292  df-f1o 4293  df-fv 4294  df-ov 5373  df-oprab 5374  df-mpt2 5375  df-1st 5624  df-2nd 5625  df-iota 5780  df-recs 5853  df-rdg 5888  df-er 6125  df-map 6229  df-en 6312  df-dom 6313  df-sdom 6314  df-riota 6478  df-sup 6686  df-pnf 8299  df-mnf 8300  df-xr 8301  df-ltxr 8302  df-le 8303  df-sub 8464  df-neg 8465  df-div 8829  df-n 9138  df-2 9195  df-n0 9354  df-z 9413  df-uz 9619  df-q 9705  df-rp 9743  df-xneg 9840  df-xadd 9841  df-xmul 9842  df-ico 10049  df-topgen 12453  df-0g 12509  df-mnd 12939  df-mhm 12990  df-grp 13219  df-ghm 13411  df-xmet 15101  df-met 15102  df-bl 15103  df-mopn 15104  df-top 15363  df-bases 15365  df-topon 15366  df-topsp 15367  df-xms 16593  df-ms 16594  df-nm 16814  df-ngp 16815  df-nmo 16926
  Copyright terms: Public domain W3C validator