MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoeq0 Unicode version

Theorem nmoeq0 18341
Description: The operator norm is zero only for the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1  |-  N  =  ( S normOp T )
nmo0.2  |-  V  =  ( Base `  S
)
nmo0.3  |-  .0.  =  ( 0g `  T )
Assertion
Ref Expression
nmoeq0  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  ( ( N `
 F )  =  0  <->  F  =  ( V  X.  {  .0.  }
) ) )

Proof of Theorem nmoeq0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . . . . . . 11  |-  ( ( N `  F )  =  0  ->  ( N `  F )  =  0 )
2 0re 8925 . . . . . . . . . . 11  |-  0  e.  RR
31, 2syl6eqel 2446 . . . . . . . . . 10  |-  ( ( N `  F )  =  0  ->  ( N `  F )  e.  RR )
4 nmo0.1 . . . . . . . . . . . 12  |-  N  =  ( S normOp T )
54isnghm2 18329 . . . . . . . . . . 11  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  ( F  e.  ( S NGHom  T )  <-> 
( N `  F
)  e.  RR ) )
65biimpar 471 . . . . . . . . . 10  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `  F )  e.  RR )  ->  F  e.  ( S NGHom  T ) )
73, 6sylan2 460 . . . . . . . . 9  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `  F )  =  0 )  ->  F  e.  ( S NGHom  T ) )
8 nmo0.2 . . . . . . . . . 10  |-  V  =  ( Base `  S
)
9 eqid 2358 . . . . . . . . . 10  |-  ( norm `  S )  =  (
norm `  S )
10 eqid 2358 . . . . . . . . . 10  |-  ( norm `  T )  =  (
norm `  T )
114, 8, 9, 10nmoi 18333 . . . . . . . . 9  |-  ( ( F  e.  ( S NGHom 
T )  /\  x  e.  V )  ->  (
( norm `  T ) `  ( F `  x
) )  <_  (
( N `  F
)  x.  ( (
norm `  S ) `  x ) ) )
127, 11sylan 457 . . . . . . . 8  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
( norm `  T ) `  ( F `  x
) )  <_  (
( N `  F
)  x.  ( (
norm `  S ) `  x ) ) )
13 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  ( N `  F )  =  0 )
1413oveq1d 5957 . . . . . . . . 9  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
( N `  F
)  x.  ( (
norm `  S ) `  x ) )  =  ( 0  x.  (
( norm `  S ) `  x ) ) )
15 simpl1 958 . . . . . . . . . . . 12  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `  F )  =  0 )  ->  S  e. NrmGrp )
168, 9nmcl 18233 . . . . . . . . . . . 12  |-  ( ( S  e. NrmGrp  /\  x  e.  V )  ->  (
( norm `  S ) `  x )  e.  RR )
1715, 16sylan 457 . . . . . . . . . . 11  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
( norm `  S ) `  x )  e.  RR )
1817recnd 8948 . . . . . . . . . 10  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
( norm `  S ) `  x )  e.  CC )
1918mul02d 9097 . . . . . . . . 9  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
0  x.  ( (
norm `  S ) `  x ) )  =  0 )
2014, 19eqtrd 2390 . . . . . . . 8  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
( N `  F
)  x.  ( (
norm `  S ) `  x ) )  =  0 )
2112, 20breqtrd 4126 . . . . . . 7  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
( norm `  T ) `  ( F `  x
) )  <_  0
)
22 simpll2 995 . . . . . . . 8  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  T  e. NrmGrp )
23 simpl3 960 . . . . . . . . . 10  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `  F )  =  0 )  ->  F  e.  ( S  GrpHom  T ) )
24 eqid 2358 . . . . . . . . . . 11  |-  ( Base `  T )  =  (
Base `  T )
258, 24ghmf 14780 . . . . . . . . . 10  |-  ( F  e.  ( S  GrpHom  T )  ->  F : V
--> ( Base `  T
) )
2623, 25syl 15 . . . . . . . . 9  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `  F )  =  0 )  ->  F : V
--> ( Base `  T
) )
27 ffvelrn 5743 . . . . . . . . 9  |-  ( ( F : V --> ( Base `  T )  /\  x  e.  V )  ->  ( F `  x )  e.  ( Base `  T
) )
2826, 27sylan 457 . . . . . . . 8  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  ( F `  x )  e.  ( Base `  T
) )
2924, 10nmge0 18234 . . . . . . . 8  |-  ( ( T  e. NrmGrp  /\  ( F `  x )  e.  ( Base `  T
) )  ->  0  <_  ( ( norm `  T
) `  ( F `  x ) ) )
3022, 28, 29syl2anc 642 . . . . . . 7  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  0  <_  ( ( norm `  T
) `  ( F `  x ) ) )
3124, 10nmcl 18233 . . . . . . . . 9  |-  ( ( T  e. NrmGrp  /\  ( F `  x )  e.  ( Base `  T
) )  ->  (
( norm `  T ) `  ( F `  x
) )  e.  RR )
3222, 28, 31syl2anc 642 . . . . . . . 8  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
( norm `  T ) `  ( F `  x
) )  e.  RR )
33 letri3 8994 . . . . . . . 8  |-  ( ( ( ( norm `  T
) `  ( F `  x ) )  e.  RR  /\  0  e.  RR )  ->  (
( ( norm `  T
) `  ( F `  x ) )  =  0  <->  ( ( (
norm `  T ) `  ( F `  x
) )  <_  0  /\  0  <_  ( (
norm `  T ) `  ( F `  x
) ) ) ) )
3432, 2, 33sylancl 643 . . . . . . 7  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
( ( norm `  T
) `  ( F `  x ) )  =  0  <->  ( ( (
norm `  T ) `  ( F `  x
) )  <_  0  /\  0  <_  ( (
norm `  T ) `  ( F `  x
) ) ) ) )
3521, 30, 34mpbir2and 888 . . . . . 6  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
( norm `  T ) `  ( F `  x
) )  =  0 )
36 nmo0.3 . . . . . . . 8  |-  .0.  =  ( 0g `  T )
3724, 10, 36nmeq0 18235 . . . . . . 7  |-  ( ( T  e. NrmGrp  /\  ( F `  x )  e.  ( Base `  T
) )  ->  (
( ( norm `  T
) `  ( F `  x ) )  =  0  <->  ( F `  x )  =  .0.  ) )
3822, 28, 37syl2anc 642 . . . . . 6  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  (
( ( norm `  T
) `  ( F `  x ) )  =  0  <->  ( F `  x )  =  .0.  ) )
3935, 38mpbid 201 . . . . 5  |-  ( ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `
 F )  =  0 )  /\  x  e.  V )  ->  ( F `  x )  =  .0.  )
4039mpteq2dva 4185 . . . 4  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `  F )  =  0 )  ->  ( x  e.  V  |->  ( F `
 x ) )  =  ( x  e.  V  |->  .0.  ) )
4126feqmptd 5655 . . . 4  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `  F )  =  0 )  ->  F  =  ( x  e.  V  |->  ( F `  x
) ) )
42 fconstmpt 4811 . . . . 5  |-  ( V  X.  {  .0.  }
)  =  ( x  e.  V  |->  .0.  )
4342a1i 10 . . . 4  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `  F )  =  0 )  ->  ( V  X.  {  .0.  } )  =  ( x  e.  V  |->  .0.  ) )
4440, 41, 433eqtr4d 2400 . . 3  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( N `  F )  =  0 )  ->  F  =  ( V  X.  {  .0.  } ) )
4544ex 423 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  ( ( N `
 F )  =  0  ->  F  =  ( V  X.  {  .0.  } ) ) )
464, 8, 36nmo0 18340 . . . 4  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  ( V  X.  {  .0.  } ) )  =  0 )
47463adant3 975 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  ( N `  ( V  X.  {  .0.  } ) )  =  0 )
48 fveq2 5605 . . . 4  |-  ( F  =  ( V  X.  {  .0.  } )  -> 
( N `  F
)  =  ( N `
 ( V  X.  {  .0.  } ) ) )
4948eqeq1d 2366 . . 3  |-  ( F  =  ( V  X.  {  .0.  } )  -> 
( ( N `  F )  =  0  <-> 
( N `  ( V  X.  {  .0.  }
) )  =  0 ) )
5047, 49syl5ibrcom 213 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  ( F  =  ( V  X.  {  .0.  } )  ->  ( N `  F )  =  0 ) )
5145, 50impbid 183 1  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  ( ( N `
 F )  =  0  <->  F  =  ( V  X.  {  .0.  }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   {csn 3716   class class class wbr 4102    e. cmpt 4156    X. cxp 4766   -->wf 5330   ` cfv 5334  (class class class)co 5942   RRcr 8823   0cc0 8824    x. cmul 8829    <_ cle 8955   Basecbs 13239   0gc0g 13493    GrpHom cghm 14773   normcnm 18195  NrmGrpcngp 18196   normOpcnmo 18310   NGHom cnghm 18311
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-map 6859  df-en 6949  df-dom 6950  df-sdom 6951  df-sup 7281  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-n0 10055  df-z 10114  df-uz 10320  df-q 10406  df-rp 10444  df-xneg 10541  df-xadd 10542  df-xmul 10543  df-ico 10751  df-topgen 13437  df-0g 13497  df-mnd 14460  df-mhm 14508  df-grp 14582  df-ghm 14774  df-xmet 16469  df-met 16470  df-bl 16471  df-mopn 16472  df-top 16736  df-bases 16738  df-topon 16739  df-topsp 16740  df-xms 17981  df-ms 17982  df-nm 18201  df-ngp 18202  df-nmo 18313  df-nghm 18314
  Copyright terms: Public domain W3C validator