HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopval Structured version   Unicode version

Theorem nmopval 23361
Description: Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nmopval  |-  ( T : ~H --> ~H  ->  (
normop `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
Distinct variable group:    x, y, T

Proof of Theorem nmopval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 xrltso 10736 . . 3  |-  <  Or  RR*
21supex 7470 . 2  |-  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } ,  RR* ,  <  )  e.  _V
3 ax-hilex 22504 . 2  |-  ~H  e.  _V
4 fveq1 5729 . . . . . . . 8  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
54fveq2d 5734 . . . . . . 7  |-  ( t  =  T  ->  ( normh `  ( t `  y ) )  =  ( normh `  ( T `  y ) ) )
65eqeq2d 2449 . . . . . 6  |-  ( t  =  T  ->  (
x  =  ( normh `  ( t `  y
) )  <->  x  =  ( normh `  ( T `  y ) ) ) )
76anbi2d 686 . . . . 5  |-  ( t  =  T  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( t `  y
) ) )  <->  ( ( normh `  y )  <_ 
1  /\  x  =  ( normh `  ( T `  y ) ) ) ) )
87rexbidv 2728 . . . 4  |-  ( t  =  T  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( t `  y
) ) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) ) )
98abbidv 2552 . . 3  |-  ( t  =  T  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( t `  y
) ) ) }  =  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } )
109supeq1d 7453 . 2  |-  ( t  =  T  ->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( t `  y ) ) ) } ,  RR* ,  <  )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } ,  RR* ,  <  ) )
11 df-nmop 23344 . 2  |-  normop  =  ( t  e.  ( ~H 
^m  ~H )  |->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( t `  y ) ) ) } ,  RR* ,  <  ) )
122, 3, 3, 10, 11fvmptmap 7052 1  |-  ( T : ~H --> ~H  ->  (
normop `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653   {cab 2424   E.wrex 2708   class class class wbr 4214   -->wf 5452   ` cfv 5456   supcsup 7447   1c1 8993   RR*cxr 9121    < clt 9122    <_ cle 9123   ~Hchil 22424   normhcno 22428   normopcnop 22450
This theorem is referenced by:  nmopxr  23371  nmoprepnf  23372  nmoplb  23412  nmopub  23413  nmopnegi  23470  nmop0  23491  nmlnop0iALT  23500  nmopun  23519  nmcopexi  23532  pjnmopi  23653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-hilex 22504
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-po 4505  df-so 4506  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-sup 7448  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-nmop 23344
  Copyright terms: Public domain W3C validator