MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opth2 Unicode version

Theorem nn0opth2 11253
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthi 11251. (Contributed by NM, 22-Jul-2004.)
Assertion
Ref Expression
nn0opth2  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( C  e.  NN0  /\  D  e.  NN0 )
)  ->  ( (
( ( A  +  B ) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^ 2 )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem nn0opth2
StepHypRef Expression
1 oveq1 5799 . . . . . 6  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( A  +  B
)  =  ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) )
21oveq1d 5807 . . . . 5  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( ( A  +  B ) ^ 2 )  =  ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  B
) ^ 2 ) )
32oveq1d 5807 . . . 4  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( ( ( A  +  B ) ^
2 )  +  B
)  =  ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^ 2 )  +  B ) )
43eqeq1d 2266 . . 3  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( ( ( ( A  +  B ) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^ 2 )  +  D )  <-> 
( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^
2 )  +  B
)  =  ( ( ( C  +  D
) ^ 2 )  +  D ) ) )
5 eqeq1 2264 . . . 4  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( A  =  C  <-> 
if ( A  e. 
NN0 ,  A , 
0 )  =  C ) )
65anbi1d 688 . . 3  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( ( A  =  C  /\  B  =  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  B  =  D ) ) )
74, 6bibi12d 314 . 2  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( ( ( ( ( A  +  B
) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^
2 )  +  D
)  <->  ( A  =  C  /\  B  =  D ) )  <->  ( (
( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^
2 )  +  B
)  =  ( ( ( C  +  D
) ^ 2 )  +  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  B  =  D ) ) ) )
8 oveq2 5800 . . . . . 6  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( if ( A  e.  NN0 ,  A ,  0 )  +  B )  =  ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) )
98oveq1d 5807 . . . . 5  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^
2 )  =  ( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 ) )
10 id 21 . . . . 5  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  ->  B  =  if ( B  e.  NN0 ,  B ,  0 ) )
119, 10oveq12d 5810 . . . 4  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^
2 )  +  B
)  =  ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) )
1211eqeq1d 2266 . . 3  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  B
) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^
2 )  +  D
)  <->  ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( C  +  D ) ^ 2 )  +  D ) ) )
13 eqeq1 2264 . . . 4  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( B  =  D  <-> 
if ( B  e. 
NN0 ,  B , 
0 )  =  D ) )
1413anbi2d 687 . . 3  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  B  =  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) ) )
1512, 14bibi12d 314 . 2  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( ( ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^ 2 )  +  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  B  =  D ) )  <->  ( (
( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e. 
NN0 ,  B , 
0 ) )  =  ( ( ( C  +  D ) ^
2 )  +  D
)  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) ) ) )
16 oveq1 5799 . . . . . 6  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( C  +  D
)  =  ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) )
1716oveq1d 5807 . . . . 5  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( ( C  +  D ) ^ 2 )  =  ( ( if ( C  e. 
NN0 ,  C , 
0 )  +  D
) ^ 2 ) )
1817oveq1d 5807 . . . 4  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( ( ( C  +  D ) ^
2 )  +  D
)  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) ^ 2 )  +  D ) )
1918eqeq2d 2269 . . 3  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( C  +  D ) ^ 2 )  +  D )  <->  ( (
( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) ^ 2 )  +  D ) ) )
20 eqeq2 2267 . . . 4  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( if ( A  e.  NN0 ,  A ,  0 )  =  C  <->  if ( A  e. 
NN0 ,  A , 
0 )  =  if ( C  e.  NN0 ,  C ,  0 ) ) )
2120anbi1d 688 . . 3  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e.  NN0 ,  C ,  0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) ) )
2219, 21bibi12d 314 . 2  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( ( ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( C  +  D
) ^ 2 )  +  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) )  <-> 
( ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e. 
NN0 ,  C , 
0 )  +  D
) ^ 2 )  +  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e.  NN0 ,  C ,  0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) ) ) )
23 oveq2 5800 . . . . . 6  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( if ( C  e.  NN0 ,  C ,  0 )  +  D )  =  ( if ( C  e. 
NN0 ,  C , 
0 )  +  if ( D  e.  NN0 ,  D ,  0 ) ) )
2423oveq1d 5807 . . . . 5  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) ^
2 )  =  ( ( if ( C  e.  NN0 ,  C ,  0 )  +  if ( D  e. 
NN0 ,  D , 
0 ) ) ^
2 ) )
25 id 21 . . . . 5  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  ->  D  =  if ( D  e.  NN0 ,  D ,  0 ) )
2624, 25oveq12d 5810 . . . 4  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) ^
2 )  +  D
)  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  if ( D  e. 
NN0 ,  D , 
0 ) ) ^
2 )  +  if ( D  e.  NN0 ,  D ,  0 ) ) )
2726eqeq2d 2269 . . 3  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e. 
NN0 ,  C , 
0 )  +  D
) ^ 2 )  +  D )  <->  ( (
( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  if ( D  e. 
NN0 ,  D , 
0 ) ) ^
2 )  +  if ( D  e.  NN0 ,  D ,  0 ) ) ) )
28 eqeq2 2267 . . . 4  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( if ( B  e.  NN0 ,  B ,  0 )  =  D  <->  if ( B  e. 
NN0 ,  B , 
0 )  =  if ( D  e.  NN0 ,  D ,  0 ) ) )
2928anbi2d 687 . . 3  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( ( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e.  NN0 ,  C ,  0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e.  NN0 ,  C ,  0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  if ( D  e.  NN0 ,  D ,  0 ) ) ) )
3027, 29bibi12d 314 . 2  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( ( ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) ^ 2 )  +  D )  <-> 
( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e. 
NN0 ,  C , 
0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) )  <-> 
( ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e. 
NN0 ,  C , 
0 )  +  if ( D  e.  NN0 ,  D ,  0 ) ) ^ 2 )  +  if ( D  e.  NN0 ,  D ,  0 ) )  <-> 
( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e. 
NN0 ,  C , 
0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  if ( D  e.  NN0 ,  D ,  0 ) ) ) ) )
31 0nn0 9947 . . . 4  |-  0  e.  NN0
3231elimel 3591 . . 3  |-  if ( A  e.  NN0 ,  A ,  0 )  e.  NN0
3331elimel 3591 . . 3  |-  if ( B  e.  NN0 ,  B ,  0 )  e.  NN0
3431elimel 3591 . . 3  |-  if ( C  e.  NN0 ,  C ,  0 )  e.  NN0
3531elimel 3591 . . 3  |-  if ( D  e.  NN0 ,  D ,  0 )  e.  NN0
3632, 33, 34, 35nn0opth2i 11252 . 2  |-  ( ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e. 
NN0 ,  B , 
0 ) )  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  if ( D  e.  NN0 ,  D ,  0 ) ) ^ 2 )  +  if ( D  e. 
NN0 ,  D , 
0 ) )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e.  NN0 ,  C ,  0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  if ( D  e.  NN0 ,  D ,  0 ) ) )
377, 15, 22, 30, 36dedth4h 3583 1  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( C  e.  NN0  /\  D  e.  NN0 )
)  ->  ( (
( ( A  +  B ) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^ 2 )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   ifcif 3539  (class class class)co 5792   0cc0 8705    + caddc 8708   2c2 9763   NN0cn0 9932   ^cexp 11070
This theorem is referenced by:  xpnnenOLD  12450
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-2 9772  df-n0 9933  df-z 9992  df-uz 10198  df-seq 11013  df-exp 11071
  Copyright terms: Public domain W3C validator