MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opth2 Unicode version

Theorem nn0opth2 11553
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthi 11551. (Contributed by NM, 22-Jul-2004.)
Assertion
Ref Expression
nn0opth2  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( C  e.  NN0  /\  D  e.  NN0 )
)  ->  ( (
( ( A  +  B ) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^ 2 )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem nn0opth2
StepHypRef Expression
1 oveq1 6079 . . . . . 6  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( A  +  B
)  =  ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) )
21oveq1d 6087 . . . . 5  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( ( A  +  B ) ^ 2 )  =  ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  B
) ^ 2 ) )
32oveq1d 6087 . . . 4  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( ( ( A  +  B ) ^
2 )  +  B
)  =  ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^ 2 )  +  B ) )
43eqeq1d 2443 . . 3  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( ( ( ( A  +  B ) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^ 2 )  +  D )  <-> 
( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^
2 )  +  B
)  =  ( ( ( C  +  D
) ^ 2 )  +  D ) ) )
5 eqeq1 2441 . . . 4  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( A  =  C  <-> 
if ( A  e. 
NN0 ,  A , 
0 )  =  C ) )
65anbi1d 686 . . 3  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( ( A  =  C  /\  B  =  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  B  =  D ) ) )
74, 6bibi12d 313 . 2  |-  ( A  =  if ( A  e.  NN0 ,  A ,  0 )  -> 
( ( ( ( ( A  +  B
) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^
2 )  +  D
)  <->  ( A  =  C  /\  B  =  D ) )  <->  ( (
( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^
2 )  +  B
)  =  ( ( ( C  +  D
) ^ 2 )  +  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  B  =  D ) ) ) )
8 oveq2 6080 . . . . . 6  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( if ( A  e.  NN0 ,  A ,  0 )  +  B )  =  ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) )
98oveq1d 6087 . . . . 5  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^
2 )  =  ( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 ) )
10 id 20 . . . . 5  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  ->  B  =  if ( B  e.  NN0 ,  B ,  0 ) )
119, 10oveq12d 6090 . . . 4  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^
2 )  +  B
)  =  ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) )
1211eqeq1d 2443 . . 3  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  B
) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^
2 )  +  D
)  <->  ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( C  +  D ) ^ 2 )  +  D ) ) )
13 eqeq1 2441 . . . 4  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( B  =  D  <-> 
if ( B  e. 
NN0 ,  B , 
0 )  =  D ) )
1413anbi2d 685 . . 3  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  B  =  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) ) )
1512, 14bibi12d 313 . 2  |-  ( B  =  if ( B  e.  NN0 ,  B ,  0 )  -> 
( ( ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  B ) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^ 2 )  +  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  B  =  D ) )  <->  ( (
( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e. 
NN0 ,  B , 
0 ) )  =  ( ( ( C  +  D ) ^
2 )  +  D
)  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) ) ) )
16 oveq1 6079 . . . . . 6  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( C  +  D
)  =  ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) )
1716oveq1d 6087 . . . . 5  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( ( C  +  D ) ^ 2 )  =  ( ( if ( C  e. 
NN0 ,  C , 
0 )  +  D
) ^ 2 ) )
1817oveq1d 6087 . . . 4  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( ( ( C  +  D ) ^
2 )  +  D
)  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) ^ 2 )  +  D ) )
1918eqeq2d 2446 . . 3  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( C  +  D ) ^ 2 )  +  D )  <->  ( (
( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) ^ 2 )  +  D ) ) )
20 eqeq2 2444 . . . 4  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( if ( A  e.  NN0 ,  A ,  0 )  =  C  <->  if ( A  e. 
NN0 ,  A , 
0 )  =  if ( C  e.  NN0 ,  C ,  0 ) ) )
2120anbi1d 686 . . 3  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e.  NN0 ,  C ,  0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) ) )
2219, 21bibi12d 313 . 2  |-  ( C  =  if ( C  e.  NN0 ,  C ,  0 )  -> 
( ( ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( C  +  D
) ^ 2 )  +  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  C  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) )  <-> 
( ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e. 
NN0 ,  C , 
0 )  +  D
) ^ 2 )  +  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e.  NN0 ,  C ,  0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) ) ) )
23 oveq2 6080 . . . . . 6  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( if ( C  e.  NN0 ,  C ,  0 )  +  D )  =  ( if ( C  e. 
NN0 ,  C , 
0 )  +  if ( D  e.  NN0 ,  D ,  0 ) ) )
2423oveq1d 6087 . . . . 5  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) ^
2 )  =  ( ( if ( C  e.  NN0 ,  C ,  0 )  +  if ( D  e. 
NN0 ,  D , 
0 ) ) ^
2 ) )
25 id 20 . . . . 5  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  ->  D  =  if ( D  e.  NN0 ,  D ,  0 ) )
2624, 25oveq12d 6090 . . . 4  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) ^
2 )  +  D
)  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  if ( D  e. 
NN0 ,  D , 
0 ) ) ^
2 )  +  if ( D  e.  NN0 ,  D ,  0 ) ) )
2726eqeq2d 2446 . . 3  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e. 
NN0 ,  C , 
0 )  +  D
) ^ 2 )  +  D )  <->  ( (
( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  if ( D  e. 
NN0 ,  D , 
0 ) ) ^
2 )  +  if ( D  e.  NN0 ,  D ,  0 ) ) ) )
28 eqeq2 2444 . . . 4  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( if ( B  e.  NN0 ,  B ,  0 )  =  D  <->  if ( B  e. 
NN0 ,  B , 
0 )  =  if ( D  e.  NN0 ,  D ,  0 ) ) )
2928anbi2d 685 . . 3  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( ( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e.  NN0 ,  C ,  0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e.  NN0 ,  C ,  0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  if ( D  e.  NN0 ,  D ,  0 ) ) ) )
3027, 29bibi12d 313 . 2  |-  ( D  =  if ( D  e.  NN0 ,  D ,  0 )  -> 
( ( ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e. 
NN0 ,  B , 
0 ) ) ^
2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  D ) ^ 2 )  +  D )  <-> 
( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e. 
NN0 ,  C , 
0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  D ) )  <-> 
( ( ( ( if ( A  e. 
NN0 ,  A , 
0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e.  NN0 ,  B ,  0 ) )  =  ( ( ( if ( C  e. 
NN0 ,  C , 
0 )  +  if ( D  e.  NN0 ,  D ,  0 ) ) ^ 2 )  +  if ( D  e.  NN0 ,  D ,  0 ) )  <-> 
( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e. 
NN0 ,  C , 
0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  if ( D  e.  NN0 ,  D ,  0 ) ) ) ) )
31 0nn0 10225 . . . 4  |-  0  e.  NN0
3231elimel 3783 . . 3  |-  if ( A  e.  NN0 ,  A ,  0 )  e.  NN0
3331elimel 3783 . . 3  |-  if ( B  e.  NN0 ,  B ,  0 )  e.  NN0
3431elimel 3783 . . 3  |-  if ( C  e.  NN0 ,  C ,  0 )  e.  NN0
3531elimel 3783 . . 3  |-  if ( D  e.  NN0 ,  D ,  0 )  e.  NN0
3632, 33, 34, 35nn0opth2i 11552 . 2  |-  ( ( ( ( if ( A  e.  NN0 ,  A ,  0 )  +  if ( B  e.  NN0 ,  B ,  0 ) ) ^ 2 )  +  if ( B  e. 
NN0 ,  B , 
0 ) )  =  ( ( ( if ( C  e.  NN0 ,  C ,  0 )  +  if ( D  e.  NN0 ,  D ,  0 ) ) ^ 2 )  +  if ( D  e. 
NN0 ,  D , 
0 ) )  <->  ( if ( A  e.  NN0 ,  A ,  0 )  =  if ( C  e.  NN0 ,  C ,  0 )  /\  if ( B  e.  NN0 ,  B ,  0 )  =  if ( D  e.  NN0 ,  D ,  0 ) ) )
377, 15, 22, 30, 36dedth4h 3775 1  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( C  e.  NN0  /\  D  e.  NN0 )
)  ->  ( (
( ( A  +  B ) ^ 2 )  +  B )  =  ( ( ( C  +  D ) ^ 2 )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   ifcif 3731  (class class class)co 6072   0cc0 8979    + caddc 8982   2c2 10038   NN0cn0 10210   ^cexp 11370
This theorem is referenced by:  xpnnenOLD  12797
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-nn 9990  df-2 10047  df-n0 10211  df-z 10272  df-uz 10478  df-seq 11312  df-exp 11371
  Copyright terms: Public domain W3C validator