MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnacom Unicode version

Theorem nnacom 6827
Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnacom  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  =  ( B  +o  A ) )

Proof of Theorem nnacom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6055 . . . . 5  |-  ( x  =  A  ->  (
x  +o  B )  =  ( A  +o  B ) )
2 oveq2 6056 . . . . 5  |-  ( x  =  A  ->  ( B  +o  x )  =  ( B  +o  A
) )
31, 2eqeq12d 2426 . . . 4  |-  ( x  =  A  ->  (
( x  +o  B
)  =  ( B  +o  x )  <->  ( A  +o  B )  =  ( B  +o  A ) ) )
43imbi2d 308 . . 3  |-  ( x  =  A  ->  (
( B  e.  om  ->  ( x  +o  B
)  =  ( B  +o  x ) )  <-> 
( B  e.  om  ->  ( A  +o  B
)  =  ( B  +o  A ) ) ) )
5 oveq1 6055 . . . . 5  |-  ( x  =  (/)  ->  ( x  +o  B )  =  ( (/)  +o  B
) )
6 oveq2 6056 . . . . 5  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
75, 6eqeq12d 2426 . . . 4  |-  ( x  =  (/)  ->  ( ( x  +o  B )  =  ( B  +o  x )  <->  ( (/)  +o  B
)  =  ( B  +o  (/) ) ) )
8 oveq1 6055 . . . . 5  |-  ( x  =  y  ->  (
x  +o  B )  =  ( y  +o  B ) )
9 oveq2 6056 . . . . 5  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
108, 9eqeq12d 2426 . . . 4  |-  ( x  =  y  ->  (
( x  +o  B
)  =  ( B  +o  x )  <->  ( y  +o  B )  =  ( B  +o  y ) ) )
11 oveq1 6055 . . . . 5  |-  ( x  =  suc  y  -> 
( x  +o  B
)  =  ( suc  y  +o  B ) )
12 oveq2 6056 . . . . 5  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1311, 12eqeq12d 2426 . . . 4  |-  ( x  =  suc  y  -> 
( ( x  +o  B )  =  ( B  +o  x )  <-> 
( suc  y  +o  B )  =  ( B  +o  suc  y
) ) )
14 nna0r 6819 . . . . 5  |-  ( B  e.  om  ->  ( (/) 
+o  B )  =  B )
15 nna0 6814 . . . . 5  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
1614, 15eqtr4d 2447 . . . 4  |-  ( B  e.  om  ->  ( (/) 
+o  B )  =  ( B  +o  (/) ) )
17 suceq 4614 . . . . . 6  |-  ( ( y  +o  B )  =  ( B  +o  y )  ->  suc  ( y  +o  B
)  =  suc  ( B  +o  y ) )
18 oveq2 6056 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( suc  y  +o  x
)  =  ( suc  y  +o  B ) )
19 oveq2 6056 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
y  +o  x )  =  ( y  +o  B ) )
20 suceq 4614 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o  B )  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  B ) )
2119, 20syl 16 . . . . . . . . . . 11  |-  ( x  =  B  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  B ) )
2218, 21eqeq12d 2426 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( suc  y  +o  x )  =  suc  ( y  +o  x
)  <->  ( suc  y  +o  B )  =  suc  ( y  +o  B
) ) )
2322imbi2d 308 . . . . . . . . 9  |-  ( x  =  B  ->  (
( y  e.  om  ->  ( suc  y  +o  x )  =  suc  ( y  +o  x
) )  <->  ( y  e.  om  ->  ( suc  y  +o  B )  =  suc  ( y  +o  B ) ) ) )
24 oveq2 6056 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( suc  y  +o  x )  =  ( suc  y  +o  (/) ) )
25 oveq2 6056 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( y  +o  x )  =  ( y  +o  (/) ) )
26 suceq 4614 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o  (/) )  ->  suc  (
y  +o  x )  =  suc  ( y  +o  (/) ) )
2725, 26syl 16 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  suc  (
y  +o  x )  =  suc  ( y  +o  (/) ) )
2824, 27eqeq12d 2426 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( suc  y  +o  x
)  =  suc  (
y  +o  x )  <-> 
( suc  y  +o  (/) )  =  suc  (
y  +o  (/) ) ) )
29 oveq2 6056 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( suc  y  +o  x
)  =  ( suc  y  +o  z ) )
30 oveq2 6056 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
y  +o  x )  =  ( y  +o  z ) )
31 suceq 4614 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o  z )  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  z ) )
3230, 31syl 16 . . . . . . . . . . 11  |-  ( x  =  z  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  z ) )
3329, 32eqeq12d 2426 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( suc  y  +o  x )  =  suc  ( y  +o  x
)  <->  ( suc  y  +o  z )  =  suc  ( y  +o  z
) ) )
34 oveq2 6056 . . . . . . . . . . 11  |-  ( x  =  suc  z  -> 
( suc  y  +o  x )  =  ( suc  y  +o  suc  z ) )
35 oveq2 6056 . . . . . . . . . . . 12  |-  ( x  =  suc  z  -> 
( y  +o  x
)  =  ( y  +o  suc  z ) )
36 suceq 4614 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o 
suc  z )  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  suc  z
) )
3735, 36syl 16 . . . . . . . . . . 11  |-  ( x  =  suc  z  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  suc  z
) )
3834, 37eqeq12d 2426 . . . . . . . . . 10  |-  ( x  =  suc  z  -> 
( ( suc  y  +o  x )  =  suc  ( y  +o  x
)  <->  ( suc  y  +o  suc  z )  =  suc  ( y  +o 
suc  z ) ) )
39 peano2 4832 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  suc  y  e.  om )
40 nna0 6814 . . . . . . . . . . . 12  |-  ( suc  y  e.  om  ->  ( suc  y  +o  (/) )  =  suc  y )
4139, 40syl 16 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( suc  y  +o  (/) )  =  suc  y )
42 nna0 6814 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  (
y  +o  (/) )  =  y )
43 suceq 4614 . . . . . . . . . . . 12  |-  ( ( y  +o  (/) )  =  y  ->  suc  ( y  +o  (/) )  =  suc  y )
4442, 43syl 16 . . . . . . . . . . 11  |-  ( y  e.  om  ->  suc  ( y  +o  (/) )  =  suc  y )
4541, 44eqtr4d 2447 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( suc  y  +o  (/) )  =  suc  ( y  +o  (/) ) )
46 suceq 4614 . . . . . . . . . . . 12  |-  ( ( suc  y  +o  z
)  =  suc  (
y  +o  z )  ->  suc  ( suc  y  +o  z )  =  suc  suc  ( y  +o  z ) )
47 nnasuc 6816 . . . . . . . . . . . . . 14  |-  ( ( suc  y  e.  om  /\  z  e.  om )  ->  ( suc  y  +o 
suc  z )  =  suc  ( suc  y  +o  z ) )
4839, 47sylan 458 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( suc  y  +o 
suc  z )  =  suc  ( suc  y  +o  z ) )
49 nnasuc 6816 . . . . . . . . . . . . . 14  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  +o  suc  z )  =  suc  ( y  +o  z
) )
50 suceq 4614 . . . . . . . . . . . . . 14  |-  ( ( y  +o  suc  z
)  =  suc  (
y  +o  z )  ->  suc  ( y  +o  suc  z )  =  suc  suc  ( y  +o  z ) )
5149, 50syl 16 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  z  e.  om )  ->  suc  ( y  +o 
suc  z )  =  suc  suc  ( y  +o  z ) )
5248, 51eqeq12d 2426 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( ( suc  y  +o  suc  z )  =  suc  ( y  +o 
suc  z )  <->  suc  ( suc  y  +o  z )  =  suc  suc  (
y  +o  z ) ) )
5346, 52syl5ibr 213 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( ( suc  y  +o  z )  =  suc  ( y  +o  z
)  ->  ( suc  y  +o  suc  z )  =  suc  ( y  +o  suc  z ) ) )
5453expcom 425 . . . . . . . . . 10  |-  ( z  e.  om  ->  (
y  e.  om  ->  ( ( suc  y  +o  z )  =  suc  ( y  +o  z
)  ->  ( suc  y  +o  suc  z )  =  suc  ( y  +o  suc  z ) ) ) )
5528, 33, 38, 45, 54finds2 4840 . . . . . . . . 9  |-  ( x  e.  om  ->  (
y  e.  om  ->  ( suc  y  +o  x
)  =  suc  (
y  +o  x ) ) )
5623, 55vtoclga 2985 . . . . . . . 8  |-  ( B  e.  om  ->  (
y  e.  om  ->  ( suc  y  +o  B
)  =  suc  (
y  +o  B ) ) )
5756imp 419 . . . . . . 7  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( suc  y  +o  B )  =  suc  ( y  +o  B
) )
58 nnasuc 6816 . . . . . . 7  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
5957, 58eqeq12d 2426 . . . . . 6  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( ( suc  y  +o  B )  =  ( B  +o  suc  y
)  <->  suc  ( y  +o  B )  =  suc  ( B  +o  y
) ) )
6017, 59syl5ibr 213 . . . . 5  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( ( y  +o  B )  =  ( B  +o  y )  ->  ( suc  y  +o  B )  =  ( B  +o  suc  y
) ) )
6160expcom 425 . . . 4  |-  ( y  e.  om  ->  ( B  e.  om  ->  ( ( y  +o  B
)  =  ( B  +o  y )  -> 
( suc  y  +o  B )  =  ( B  +o  suc  y
) ) ) )
627, 10, 13, 16, 61finds2 4840 . . 3  |-  ( x  e.  om  ->  ( B  e.  om  ->  ( x  +o  B )  =  ( B  +o  x ) ) )
634, 62vtoclga 2985 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  +o  B )  =  ( B  +o  A ) ) )
6463imp 419 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  =  ( B  +o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   (/)c0 3596   suc csuc 4551   omcom 4812  (class class class)co 6048    +o coa 6688
This theorem is referenced by:  nnaordr  6830  nnmsucr  6835  nnaword2  6840  omopthlem2  6866  omopthi  6867  addcompi  8735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-recs 6600  df-rdg 6635  df-oadd 6695
  Copyright terms: Public domain W3C validator