MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordex Unicode version

Theorem nnaordex 6632
Description: Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordex  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nnaordex
StepHypRef Expression
1 nnon 4661 . . . . . 6  |-  ( B  e.  om  ->  B  e.  On )
21adantl 452 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  B  e.  On )
3 onelss 4433 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
42, 3syl 15 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
5 nnawordex 6631 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
64, 5sylibd 205 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  E. x  e.  om  ( A  +o  x
)  =  B ) )
7 simplr 731 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  A  e.  B )  /\  x  e.  om )  ->  A  e.  B
)
8 eleq2 2345 . . . . . . . . 9  |-  ( ( A  +o  x )  =  B  ->  ( A  e.  ( A  +o  x )  <->  A  e.  B ) )
97, 8syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  A  e.  B )  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  A  e.  ( A  +o  x
) ) )
10 peano1 4674 . . . . . . . . . . . 12  |-  (/)  e.  om
11 nnaord 6613 . . . . . . . . . . . 12  |-  ( (
(/)  e.  om  /\  x  e.  om  /\  A  e. 
om )  ->  ( (/) 
e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x ) ) )
1210, 11mp3an1 1264 . . . . . . . . . . 11  |-  ( ( x  e.  om  /\  A  e.  om )  ->  ( (/)  e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x
) ) )
1312ancoms 439 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x
) ) )
14 nna0 6598 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
1514adantr 451 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  (/) )  =  A )
1615eleq1d 2350 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  (/) )  e.  ( A  +o  x )  <->  A  e.  ( A  +o  x
) ) )
1713, 16bitrd 244 . . . . . . . . 9  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  <->  A  e.  ( A  +o  x ) ) )
1817adantlr 695 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  A  e.  B )  /\  x  e.  om )  ->  ( (/)  e.  x  <->  A  e.  ( A  +o  x ) ) )
199, 18sylibrd 225 . . . . . . 7  |-  ( ( ( A  e.  om  /\  A  e.  B )  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  (/)  e.  x
) )
2019ancrd 537 . . . . . 6  |-  ( ( ( A  e.  om  /\  A  e.  B )  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
2120reximdva 2656 . . . . 5  |-  ( ( A  e.  om  /\  A  e.  B )  ->  ( E. x  e. 
om  ( A  +o  x )  =  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
2221ex 423 . . . 4  |-  ( A  e.  om  ->  ( A  e.  B  ->  ( E. x  e.  om  ( A  +o  x
)  =  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
2322adantr 451 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( E. x  e. 
om  ( A  +o  x )  =  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
246, 23mpdd 36 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
2517biimpa 470 . . . . . 6  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  (/)  e.  x )  ->  A  e.  ( A  +o  x ) )
2625, 8syl5ibcom 211 . . . . 5  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  (/)  e.  x )  ->  ( ( A  +o  x )  =  B  ->  A  e.  B ) )
2726expimpd 586 . . . 4  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
2827rexlimdva 2668 . . 3  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
2928adantr 451 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. x  e. 
om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
3024, 29impbid 183 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   E.wrex 2545    C_ wss 3153   (/)c0 3456   Oncon0 4391   omcom 4655  (class class class)co 5820    +o coa 6472
This theorem is referenced by:  ltexpi  8522
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-recs 6384  df-rdg 6419  df-oadd 6479
  Copyright terms: Public domain W3C validator