MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordex Unicode version

Theorem nnaordex 6817
Description: Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordex  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nnaordex
StepHypRef Expression
1 nnon 4791 . . . . . 6  |-  ( B  e.  om  ->  B  e.  On )
21adantl 453 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  B  e.  On )
3 onelss 4564 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
42, 3syl 16 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
5 nnawordex 6816 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
64, 5sylibd 206 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  E. x  e.  om  ( A  +o  x
)  =  B ) )
7 simplr 732 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  A  e.  B )  /\  x  e.  om )  ->  A  e.  B
)
8 eleq2 2448 . . . . . . . . 9  |-  ( ( A  +o  x )  =  B  ->  ( A  e.  ( A  +o  x )  <->  A  e.  B ) )
97, 8syl5ibrcom 214 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  A  e.  B )  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  A  e.  ( A  +o  x
) ) )
10 peano1 4804 . . . . . . . . . . . 12  |-  (/)  e.  om
11 nnaord 6798 . . . . . . . . . . . 12  |-  ( (
(/)  e.  om  /\  x  e.  om  /\  A  e. 
om )  ->  ( (/) 
e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x ) ) )
1210, 11mp3an1 1266 . . . . . . . . . . 11  |-  ( ( x  e.  om  /\  A  e.  om )  ->  ( (/)  e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x
) ) )
1312ancoms 440 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  <->  ( A  +o  (/) )  e.  ( A  +o  x
) ) )
14 nna0 6783 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
1514adantr 452 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  (/) )  =  A )
1615eleq1d 2453 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  (/) )  e.  ( A  +o  x )  <->  A  e.  ( A  +o  x
) ) )
1713, 16bitrd 245 . . . . . . . . 9  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( (/)  e.  x  <->  A  e.  ( A  +o  x ) ) )
1817adantlr 696 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  A  e.  B )  /\  x  e.  om )  ->  ( (/)  e.  x  <->  A  e.  ( A  +o  x ) ) )
199, 18sylibrd 226 . . . . . . 7  |-  ( ( ( A  e.  om  /\  A  e.  B )  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  (/)  e.  x
) )
2019ancrd 538 . . . . . 6  |-  ( ( ( A  e.  om  /\  A  e.  B )  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
2120reximdva 2761 . . . . 5  |-  ( ( A  e.  om  /\  A  e.  B )  ->  ( E. x  e. 
om  ( A  +o  x )  =  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
2221ex 424 . . . 4  |-  ( A  e.  om  ->  ( A  e.  B  ->  ( E. x  e.  om  ( A  +o  x
)  =  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
2322adantr 452 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( E. x  e. 
om  ( A  +o  x )  =  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
246, 23mpdd 38 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
2517biimpa 471 . . . . . 6  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  (/)  e.  x )  ->  A  e.  ( A  +o  x ) )
2625, 8syl5ibcom 212 . . . . 5  |-  ( ( ( A  e.  om  /\  x  e.  om )  /\  (/)  e.  x )  ->  ( ( A  +o  x )  =  B  ->  A  e.  B ) )
2726expimpd 587 . . . 4  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
2827rexlimdva 2773 . . 3  |-  ( A  e.  om  ->  ( E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
2928adantr 452 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. x  e. 
om  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
3024, 29impbid 184 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2650    C_ wss 3263   (/)c0 3571   Oncon0 4522   omcom 4785  (class class class)co 6020    +o coa 6657
This theorem is referenced by:  ltexpi  8712
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-recs 6569  df-rdg 6604  df-oadd 6664
  Copyright terms: Public domain W3C validator