MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaword1 Unicode version

Theorem nnaword1 6858
Description: Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  A  C_  ( A  +o  B ) )

Proof of Theorem nnaword1
StepHypRef Expression
1 nna0 6833 . . 3  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
21adantr 452 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  (/) )  =  A )
3 0ss 3643 . . 3  |-  (/)  C_  B
4 peano1 4850 . . . 4  |-  (/)  e.  om
5 nnaword 6856 . . . . 5  |-  ( (
(/)  e.  om  /\  B  e.  om  /\  A  e. 
om )  ->  ( (/)  C_  B  <->  ( A  +o  (/) )  C_  ( A  +o  B ) ) )
653com13 1158 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  (/)  e.  om )  ->  ( (/)  C_  B  <->  ( A  +o  (/) )  C_  ( A  +o  B
) ) )
74, 6mp3an3 1268 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( (/)  C_  B  <->  ( A  +o  (/) )  C_  ( A  +o  B ) ) )
83, 7mpbii 203 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  (/) )  C_  ( A  +o  B
) )
92, 8eqsstr3d 3370 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  A  C_  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3307   (/)c0 3615   omcom 4831  (class class class)co 6067    +o coa 6707
This theorem is referenced by:  nnaword2  6859  nnmordi  6860  nnawordex  6866  omopthlem2  6885  unfilem1  7357  unfi  7360  ackbij1lem12  8095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-recs 6619  df-rdg 6654  df-oadd 6714
  Copyright terms: Public domain W3C validator