![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > nncand | Unicode version |
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
pncand.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nncand |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pncand.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | nncan 9286 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 643 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: moddiffl 11214 flmod 11217 ccatswrd 11728 o1dif 12378 efaddlem 12650 4sqlem5 13265 mul4sqlem 13276 4sqlem14 13281 coe1tmmul2 16623 znunit 16799 blssps 18407 blss 18408 metdstri 18834 ivthlem3 19303 ioorcl2 19417 vitalilem2 19454 dvexp3 19815 dvcvx 19857 iblulm 20276 chordthmlem4 20629 cubic 20642 dquartlem1 20644 birthdaylem2 20744 ftalem2 20809 basellem3 20818 lgsquadlem1 21091 pntrlog2bndlem4 21227 lt2addrd 24068 ballotlemsf1o 24724 lgamgulmlem2 24767 lgamcvg2 24792 fprodser 25228 fprodrev 25254 fallfacfac 25302 axsegconlem1 25760 lzenom 26718 rmspecfund 26862 fzmaxdif 26936 jm2.18 26949 jm2.19 26954 jm2.20nn 26958 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-13 1723 ax-14 1725 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2385 ax-sep 4290 ax-nul 4298 ax-pow 4337 ax-pr 4363 ax-un 4660 ax-resscn 9003 ax-1cn 9004 ax-icn 9005 ax-addcl 9006 ax-addrcl 9007 ax-mulcl 9008 ax-mulrcl 9009 ax-mulcom 9010 ax-addass 9011 ax-mulass 9012 ax-distr 9013 ax-i2m1 9014 ax-1ne0 9015 ax-1rid 9016 ax-rnegex 9017 ax-rrecex 9018 ax-cnre 9019 ax-pre-lttri 9020 ax-pre-lttrn 9021 ax-pre-ltadd 9022 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3or 937 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-eu 2258 df-mo 2259 df-clab 2391 df-cleq 2397 df-clel 2400 df-nfc 2529 df-ne 2569 df-nel 2570 df-ral 2671 df-rex 2672 df-reu 2673 df-rab 2675 df-v 2918 df-sbc 3122 df-csb 3212 df-dif 3283 df-un 3285 df-in 3287 df-ss 3294 df-nul 3589 df-if 3700 df-pw 3761 df-sn 3780 df-pr 3781 df-op 3783 df-uni 3976 df-br 4173 df-opab 4227 df-mpt 4228 df-id 4458 df-po 4463 df-so 4464 df-xp 4843 df-rel 4844 df-cnv 4845 df-co 4846 df-dm 4847 df-rn 4848 df-res 4849 df-ima 4850 df-iota 5377 df-fun 5415 df-fn 5416 df-f 5417 df-f1 5418 df-fo 5419 df-f1o 5420 df-fv 5421 df-ov 6043 df-oprab 6044 df-mpt2 6045 df-riota 6508 df-er 6864 df-en 7069 df-dom 7070 df-sdom 7071 df-pnf 9078 df-mnf 9079 df-ltxr 9081 df-sub 9249 |
Copyright terms: Public domain | W3C validator |