MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndi Unicode version

Theorem nndi 6763
Description: Distributive law for natural numbers. Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nndi  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )

Proof of Theorem nndi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5989 . . . . . . 7  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
21oveq2d 5997 . . . . . 6  |-  ( x  =  C  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  C ) ) )
3 oveq2 5989 . . . . . . 7  |-  ( x  =  C  ->  ( A  .o  x )  =  ( A  .o  C
) )
43oveq2d 5997 . . . . . 6  |-  ( x  =  C  ->  (
( A  .o  B
)  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) )
52, 4eqeq12d 2380 . . . . 5  |-  ( x  =  C  ->  (
( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  C
) )  =  ( ( A  .o  B
)  +o  ( A  .o  C ) ) ) )
65imbi2d 307 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  x
) )  =  ( ( A  .o  B
)  +o  ( A  .o  x ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) ) ) )
7 oveq2 5989 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
87oveq2d 5997 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  (/) ) ) )
9 oveq2 5989 . . . . . . 7  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
109oveq2d 5997 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  .o  B )  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) )
118, 10eqeq12d 2380 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) ) )
12 oveq2 5989 . . . . . . 7  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
1312oveq2d 5997 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  y ) ) )
14 oveq2 5989 . . . . . . 7  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
1514oveq2d 5997 . . . . . 6  |-  ( x  =  y  ->  (
( A  .o  B
)  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) ) )
1613, 15eqeq12d 2380 . . . . 5  |-  ( x  =  y  ->  (
( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  y ) ) ) )
17 oveq2 5989 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1817oveq2d 5997 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  suc  y
) ) )
19 oveq2 5989 . . . . . . 7  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
2019oveq2d 5997 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  .o  B )  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) )
2118, 20eqeq12d 2380 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  .o  ( B  +o  x
) )  =  ( ( A  .o  B
)  +o  ( A  .o  x ) )  <-> 
( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) )
22 nna0 6744 . . . . . . . . 9  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2322adantl 452 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  +o  (/) )  =  B )
2423oveq2d 5997 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( A  .o  B
) )
25 nnmcl 6752 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
26 nna0 6744 . . . . . . . 8  |-  ( ( A  .o  B )  e.  om  ->  (
( A  .o  B
)  +o  (/) )  =  ( A  .o  B
) )
2725, 26syl 15 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  (/) )  =  ( A  .o  B
) )
2824, 27eqtr4d 2401 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  (/) ) )
29 nnm0 6745 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
3029adantr 451 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  (/) )  =  (/) )
3130oveq2d 5997 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  ( A  .o  (/) ) )  =  ( ( A  .o  B )  +o  (/) ) )
3228, 31eqtr4d 2401 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) )
33 oveq1 5988 . . . . . . . . 9  |-  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  (
( A  .o  ( B  +o  y ) )  +o  A )  =  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
) )
34 nnasuc 6746 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
35343adant1 974 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y ) )
3635oveq2d 5997 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( A  .o  suc  ( B  +o  y
) ) )
37 nnacl 6751 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
38 nnmsuc 6747 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  ( B  +o  y
)  e.  om )  ->  ( A  .o  suc  ( B  +o  y
) )  =  ( ( A  .o  ( B  +o  y ) )  +o  A ) )
3937, 38sylan2 460 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  .o  suc  ( B  +o  y ) )  =  ( ( A  .o  ( B  +o  y
) )  +o  A
) )
40393impb 1148 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  ( B  +o  y ) )  =  ( ( A  .o  ( B  +o  y ) )  +o  A ) )
4136, 40eqtrd 2398 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  ( B  +o  y
) )  +o  A
) )
42 nnmsuc 6747 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
43423adant2 975 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y )  +o  A ) )
4443oveq2d 5997 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  B
)  +o  ( A  .o  suc  y ) )  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
45 nnmcl 6752 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  y
)  e.  om )
46 nnaass 6762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  .o  B
)  e.  om  /\  ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
)  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
4725, 46syl3an1 1216 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
)  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
4845, 47syl3an2 1217 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  e.  om  /\  y  e.  om )  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B
)  +o  ( ( A  .o  y )  +o  A ) ) )
49483exp 1151 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e. 
om  /\  y  e.  om )  ->  ( A  e.  om  ->  ( (
( A  .o  B
)  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) )
5049exp4b 590 . . . . . . . . . . . . . . 15  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  e.  om  ->  ( y  e.  om  ->  ( A  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) ) )
5150pm2.43a 45 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( A  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) )
5251com4r 80 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) )
5352pm2.43i 43 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) )
54533imp 1146 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) )
5544, 54eqtr4d 2401 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  B
)  +o  ( A  .o  suc  y ) )  =  ( ( ( A  .o  B
)  +o  ( A  .o  y ) )  +o  A ) )
5641, 55eqeq12d 2380 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) )  <->  ( ( A  .o  ( B  +o  y ) )  +o  A )  =  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A ) ) )
5733, 56syl5ibr 212 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) )
58573exp 1151 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) ) ) )
5958com3r 73 . . . . . 6  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( B  e.  om  ->  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) ) ) )
6059imp3a 420 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  ( B  +o  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  y ) )  ->  ( A  .o  ( B  +o  suc  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  suc  y ) ) ) ) )
6111, 16, 21, 32, 60finds2 4787 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) ) ) )
626, 61vtoclga 2934 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) ) )
6362exp3acom3r 1375 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( C  e.  om  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) ) ) )
64633imp 1146 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   (/)c0 3543   suc csuc 4497   omcom 4759  (class class class)co 5981    +o coa 6618    .o comu 6619
This theorem is referenced by:  nnmass  6764  distrpi  8669
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-recs 6530  df-rdg 6565  df-oadd 6625  df-omul 6626
  Copyright terms: Public domain W3C validator