MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndi Structured version   Unicode version

Theorem nndi 6858
Description: Distributive law for natural numbers. Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nndi  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )

Proof of Theorem nndi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6081 . . . . . . 7  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
21oveq2d 6089 . . . . . 6  |-  ( x  =  C  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  C ) ) )
3 oveq2 6081 . . . . . . 7  |-  ( x  =  C  ->  ( A  .o  x )  =  ( A  .o  C
) )
43oveq2d 6089 . . . . . 6  |-  ( x  =  C  ->  (
( A  .o  B
)  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) )
52, 4eqeq12d 2449 . . . . 5  |-  ( x  =  C  ->  (
( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  C
) )  =  ( ( A  .o  B
)  +o  ( A  .o  C ) ) ) )
65imbi2d 308 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  x
) )  =  ( ( A  .o  B
)  +o  ( A  .o  x ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) ) ) )
7 oveq2 6081 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
87oveq2d 6089 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  (/) ) ) )
9 oveq2 6081 . . . . . . 7  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
109oveq2d 6089 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  .o  B )  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) )
118, 10eqeq12d 2449 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) ) )
12 oveq2 6081 . . . . . . 7  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
1312oveq2d 6089 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  y ) ) )
14 oveq2 6081 . . . . . . 7  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
1514oveq2d 6089 . . . . . 6  |-  ( x  =  y  ->  (
( A  .o  B
)  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) ) )
1613, 15eqeq12d 2449 . . . . 5  |-  ( x  =  y  ->  (
( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  y ) ) ) )
17 oveq2 6081 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1817oveq2d 6089 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  suc  y
) ) )
19 oveq2 6081 . . . . . . 7  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
2019oveq2d 6089 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  .o  B )  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) )
2118, 20eqeq12d 2449 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  .o  ( B  +o  x
) )  =  ( ( A  .o  B
)  +o  ( A  .o  x ) )  <-> 
( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) )
22 nna0 6839 . . . . . . . . 9  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2322adantl 453 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  +o  (/) )  =  B )
2423oveq2d 6089 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( A  .o  B
) )
25 nnmcl 6847 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
26 nna0 6839 . . . . . . . 8  |-  ( ( A  .o  B )  e.  om  ->  (
( A  .o  B
)  +o  (/) )  =  ( A  .o  B
) )
2725, 26syl 16 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  (/) )  =  ( A  .o  B
) )
2824, 27eqtr4d 2470 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  (/) ) )
29 nnm0 6840 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
3029adantr 452 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  (/) )  =  (/) )
3130oveq2d 6089 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  ( A  .o  (/) ) )  =  ( ( A  .o  B )  +o  (/) ) )
3228, 31eqtr4d 2470 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) )
33 oveq1 6080 . . . . . . . . 9  |-  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  (
( A  .o  ( B  +o  y ) )  +o  A )  =  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
) )
34 nnasuc 6841 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
35343adant1 975 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y ) )
3635oveq2d 6089 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( A  .o  suc  ( B  +o  y
) ) )
37 nnacl 6846 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
38 nnmsuc 6842 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  ( B  +o  y
)  e.  om )  ->  ( A  .o  suc  ( B  +o  y
) )  =  ( ( A  .o  ( B  +o  y ) )  +o  A ) )
3937, 38sylan2 461 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  .o  suc  ( B  +o  y ) )  =  ( ( A  .o  ( B  +o  y
) )  +o  A
) )
40393impb 1149 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  ( B  +o  y ) )  =  ( ( A  .o  ( B  +o  y ) )  +o  A ) )
4136, 40eqtrd 2467 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  ( B  +o  y
) )  +o  A
) )
42 nnmsuc 6842 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
43423adant2 976 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y )  +o  A ) )
4443oveq2d 6089 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  B
)  +o  ( A  .o  suc  y ) )  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
45 nnmcl 6847 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  y
)  e.  om )
46 nnaass 6857 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  .o  B
)  e.  om  /\  ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
)  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
4725, 46syl3an1 1217 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
)  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
4845, 47syl3an2 1218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  e.  om  /\  y  e.  om )  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B
)  +o  ( ( A  .o  y )  +o  A ) ) )
49483exp 1152 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e. 
om  /\  y  e.  om )  ->  ( A  e.  om  ->  ( (
( A  .o  B
)  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) )
5049exp4b 591 . . . . . . . . . . . . . . 15  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  e.  om  ->  ( y  e.  om  ->  ( A  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) ) )
5150pm2.43a 47 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( A  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) )
5251com4r 82 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) )
5352pm2.43i 45 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) )
54533imp 1147 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) )
5544, 54eqtr4d 2470 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  B
)  +o  ( A  .o  suc  y ) )  =  ( ( ( A  .o  B
)  +o  ( A  .o  y ) )  +o  A ) )
5641, 55eqeq12d 2449 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) )  <->  ( ( A  .o  ( B  +o  y ) )  +o  A )  =  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A ) ) )
5733, 56syl5ibr 213 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) )
58573exp 1152 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) ) ) )
5958com3r 75 . . . . . 6  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( B  e.  om  ->  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) ) ) )
6059imp3a 421 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  ( B  +o  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  y ) )  ->  ( A  .o  ( B  +o  suc  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  suc  y ) ) ) ) )
6111, 16, 21, 32, 60finds2 4865 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) ) ) )
626, 61vtoclga 3009 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) ) )
6362exp3acom3r 1379 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( C  e.  om  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) ) ) )
64633imp 1147 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   (/)c0 3620   suc csuc 4575   omcom 4837  (class class class)co 6073    +o coa 6713    .o comu 6714
This theorem is referenced by:  nnmass  6859  distrpi  8767
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-oadd 6720  df-omul 6721
  Copyright terms: Public domain W3C validator