MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnecl Unicode version

Theorem nnecl 6753
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnecl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ^o  B
)  e.  om )

Proof of Theorem nnecl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5989 . . . . 5  |-  ( x  =  B  ->  ( A  ^o  x )  =  ( A  ^o  B
) )
21eleq1d 2432 . . . 4  |-  ( x  =  B  ->  (
( A  ^o  x
)  e.  om  <->  ( A  ^o  B )  e.  om ) )
32imbi2d 307 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  ^o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  ^o  B )  e.  om ) ) )
4 oveq2 5989 . . . . 5  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
54eleq1d 2432 . . . 4  |-  ( x  =  (/)  ->  ( ( A  ^o  x )  e.  om  <->  ( A  ^o  (/) )  e.  om ) )
6 oveq2 5989 . . . . 5  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
76eleq1d 2432 . . . 4  |-  ( x  =  y  ->  (
( A  ^o  x
)  e.  om  <->  ( A  ^o  y )  e.  om ) )
8 oveq2 5989 . . . . 5  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
98eleq1d 2432 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  ^o  x )  e.  om  <->  ( A  ^o  suc  y
)  e.  om )
)
10 nnon 4765 . . . . . 6  |-  ( A  e.  om  ->  A  e.  On )
11 oe0 6663 . . . . . 6  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
1210, 11syl 15 . . . . 5  |-  ( A  e.  om  ->  ( A  ^o  (/) )  =  1o )
13 df-1o 6621 . . . . . 6  |-  1o  =  suc  (/)
14 peano1 4778 . . . . . . 7  |-  (/)  e.  om
15 peano2 4779 . . . . . . 7  |-  ( (/)  e.  om  ->  suc  (/)  e.  om )
1614, 15ax-mp 8 . . . . . 6  |-  suc  (/)  e.  om
1713, 16eqeltri 2436 . . . . 5  |-  1o  e.  om
1812, 17syl6eqel 2454 . . . 4  |-  ( A  e.  om  ->  ( A  ^o  (/) )  e.  om )
19 nnmcl 6752 . . . . . . . 8  |-  ( ( ( A  ^o  y
)  e.  om  /\  A  e.  om )  ->  ( ( A  ^o  y )  .o  A
)  e.  om )
2019expcom 424 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  ^o  y
)  e.  om  ->  ( ( A  ^o  y
)  .o  A )  e.  om ) )
2120adantr 451 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  y )  e.  om  ->  ( ( A  ^o  y )  .o  A
)  e.  om )
)
22 nnesuc 6748 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
2322eleq1d 2432 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  suc  y )  e.  om  <->  ( ( A  ^o  y
)  .o  A )  e.  om ) )
2421, 23sylibrd 225 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  y )  e.  om  ->  ( A  ^o  suc  y )  e.  om ) )
2524expcom 424 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  ^o  y
)  e.  om  ->  ( A  ^o  suc  y
)  e.  om )
) )
265, 7, 9, 18, 25finds2 4787 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  ^o  x )  e.  om ) )
273, 26vtoclga 2934 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  ^o  B )  e.  om ) )
2827impcom 419 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ^o  B
)  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   (/)c0 3543   Oncon0 4495   suc csuc 4497   omcom 4759  (class class class)co 5981   1oc1o 6614    .o comu 6619    ^o coe 6620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-omul 6626  df-oexp 6627
  Copyright terms: Public domain W3C validator