MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnecl Unicode version

Theorem nnecl 6607
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnecl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ^o  B
)  e.  om )

Proof of Theorem nnecl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5828 . . . . 5  |-  ( x  =  B  ->  ( A  ^o  x )  =  ( A  ^o  B
) )
21eleq1d 2350 . . . 4  |-  ( x  =  B  ->  (
( A  ^o  x
)  e.  om  <->  ( A  ^o  B )  e.  om ) )
32imbi2d 307 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  ^o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  ^o  B )  e.  om ) ) )
4 oveq2 5828 . . . . 5  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
54eleq1d 2350 . . . 4  |-  ( x  =  (/)  ->  ( ( A  ^o  x )  e.  om  <->  ( A  ^o  (/) )  e.  om ) )
6 oveq2 5828 . . . . 5  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
76eleq1d 2350 . . . 4  |-  ( x  =  y  ->  (
( A  ^o  x
)  e.  om  <->  ( A  ^o  y )  e.  om ) )
8 oveq2 5828 . . . . 5  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
98eleq1d 2350 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  ^o  x )  e.  om  <->  ( A  ^o  suc  y
)  e.  om )
)
10 nnon 4661 . . . . . 6  |-  ( A  e.  om  ->  A  e.  On )
11 oe0 6517 . . . . . 6  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
1210, 11syl 15 . . . . 5  |-  ( A  e.  om  ->  ( A  ^o  (/) )  =  1o )
13 df-1o 6475 . . . . . 6  |-  1o  =  suc  (/)
14 peano1 4674 . . . . . . 7  |-  (/)  e.  om
15 peano2 4675 . . . . . . 7  |-  ( (/)  e.  om  ->  suc  (/)  e.  om )
1614, 15ax-mp 8 . . . . . 6  |-  suc  (/)  e.  om
1713, 16eqeltri 2354 . . . . 5  |-  1o  e.  om
1812, 17syl6eqel 2372 . . . 4  |-  ( A  e.  om  ->  ( A  ^o  (/) )  e.  om )
19 nnmcl 6606 . . . . . . . 8  |-  ( ( ( A  ^o  y
)  e.  om  /\  A  e.  om )  ->  ( ( A  ^o  y )  .o  A
)  e.  om )
2019expcom 424 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  ^o  y
)  e.  om  ->  ( ( A  ^o  y
)  .o  A )  e.  om ) )
2120adantr 451 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  y )  e.  om  ->  ( ( A  ^o  y )  .o  A
)  e.  om )
)
22 nnesuc 6602 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
2322eleq1d 2350 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  suc  y )  e.  om  <->  ( ( A  ^o  y
)  .o  A )  e.  om ) )
2421, 23sylibrd 225 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  y )  e.  om  ->  ( A  ^o  suc  y )  e.  om ) )
2524expcom 424 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  ^o  y
)  e.  om  ->  ( A  ^o  suc  y
)  e.  om )
) )
265, 7, 9, 18, 25finds2 4683 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  ^o  x )  e.  om ) )
273, 26vtoclga 2850 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  ^o  B )  e.  om ) )
2827impcom 419 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ^o  B
)  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685   (/)c0 3456   Oncon0 4391   suc csuc 4393   omcom 4655  (class class class)co 5820   1oc1o 6468    .o comu 6473    ^o coe 6474
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-omul 6480  df-oexp 6481
  Copyright terms: Public domain W3C validator