MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnecl Structured version   Unicode version

Theorem nnecl 6848
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnecl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ^o  B
)  e.  om )

Proof of Theorem nnecl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6081 . . . . 5  |-  ( x  =  B  ->  ( A  ^o  x )  =  ( A  ^o  B
) )
21eleq1d 2501 . . . 4  |-  ( x  =  B  ->  (
( A  ^o  x
)  e.  om  <->  ( A  ^o  B )  e.  om ) )
32imbi2d 308 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  ^o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  ^o  B )  e.  om ) ) )
4 oveq2 6081 . . . . 5  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
54eleq1d 2501 . . . 4  |-  ( x  =  (/)  ->  ( ( A  ^o  x )  e.  om  <->  ( A  ^o  (/) )  e.  om ) )
6 oveq2 6081 . . . . 5  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
76eleq1d 2501 . . . 4  |-  ( x  =  y  ->  (
( A  ^o  x
)  e.  om  <->  ( A  ^o  y )  e.  om ) )
8 oveq2 6081 . . . . 5  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
98eleq1d 2501 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  ^o  x )  e.  om  <->  ( A  ^o  suc  y
)  e.  om )
)
10 nnon 4843 . . . . . 6  |-  ( A  e.  om  ->  A  e.  On )
11 oe0 6758 . . . . . 6  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
1210, 11syl 16 . . . . 5  |-  ( A  e.  om  ->  ( A  ^o  (/) )  =  1o )
13 df-1o 6716 . . . . . 6  |-  1o  =  suc  (/)
14 peano1 4856 . . . . . . 7  |-  (/)  e.  om
15 peano2 4857 . . . . . . 7  |-  ( (/)  e.  om  ->  suc  (/)  e.  om )
1614, 15ax-mp 8 . . . . . 6  |-  suc  (/)  e.  om
1713, 16eqeltri 2505 . . . . 5  |-  1o  e.  om
1812, 17syl6eqel 2523 . . . 4  |-  ( A  e.  om  ->  ( A  ^o  (/) )  e.  om )
19 nnmcl 6847 . . . . . . . 8  |-  ( ( ( A  ^o  y
)  e.  om  /\  A  e.  om )  ->  ( ( A  ^o  y )  .o  A
)  e.  om )
2019expcom 425 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  ^o  y
)  e.  om  ->  ( ( A  ^o  y
)  .o  A )  e.  om ) )
2120adantr 452 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  y )  e.  om  ->  ( ( A  ^o  y )  .o  A
)  e.  om )
)
22 nnesuc 6843 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
2322eleq1d 2501 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  suc  y )  e.  om  <->  ( ( A  ^o  y
)  .o  A )  e.  om ) )
2421, 23sylibrd 226 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  y )  e.  om  ->  ( A  ^o  suc  y )  e.  om ) )
2524expcom 425 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  ^o  y
)  e.  om  ->  ( A  ^o  suc  y
)  e.  om )
) )
265, 7, 9, 18, 25finds2 4865 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  ^o  x )  e.  om ) )
273, 26vtoclga 3009 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  ^o  B )  e.  om ) )
2827impcom 420 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ^o  B
)  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   (/)c0 3620   Oncon0 4573   suc csuc 4575   omcom 4837  (class class class)co 6073   1oc1o 6709    .o comu 6714    ^o coe 6715
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-oexp 6722
  Copyright terms: Public domain W3C validator