MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnm0r Unicode version

Theorem nnm0r 6789
Description: Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnm0r  |-  ( A  e.  om  ->  ( (/) 
.o  A )  =  (/) )

Proof of Theorem nnm0r
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6028 . . 3  |-  ( x  =  (/)  ->  ( (/)  .o  x )  =  (
(/)  .o  (/) ) )
21eqeq1d 2395 . 2  |-  ( x  =  (/)  ->  ( (
(/)  .o  x )  =  (/)  <->  ( (/)  .o  (/) )  =  (/) ) )
3 oveq2 6028 . . 3  |-  ( x  =  y  ->  ( (/) 
.o  x )  =  ( (/)  .o  y
) )
43eqeq1d 2395 . 2  |-  ( x  =  y  ->  (
( (/)  .o  x )  =  (/)  <->  ( (/)  .o  y
)  =  (/) ) )
5 oveq2 6028 . . 3  |-  ( x  =  suc  y  -> 
( (/)  .o  x )  =  ( (/)  .o  suc  y ) )
65eqeq1d 2395 . 2  |-  ( x  =  suc  y  -> 
( ( (/)  .o  x
)  =  (/)  <->  ( (/)  .o  suc  y )  =  (/) ) )
7 oveq2 6028 . . 3  |-  ( x  =  A  ->  ( (/) 
.o  x )  =  ( (/)  .o  A
) )
87eqeq1d 2395 . 2  |-  ( x  =  A  ->  (
( (/)  .o  x )  =  (/)  <->  ( (/)  .o  A
)  =  (/) ) )
9 om0x 6699 . 2  |-  ( (/)  .o  (/) )  =  (/)
10 oveq1 6027 . . . 4  |-  ( (
(/)  .o  y )  =  (/)  ->  ( ( (/) 
.o  y )  +o  (/) )  =  ( (/) 
+o  (/) ) )
11 0elon 4575 . . . . 5  |-  (/)  e.  On
12 oa0 6696 . . . . 5  |-  ( (/)  e.  On  ->  ( (/)  +o  (/) )  =  (/) )
1311, 12ax-mp 8 . . . 4  |-  ( (/)  +o  (/) )  =  (/)
1410, 13syl6eq 2435 . . 3  |-  ( (
(/)  .o  y )  =  (/)  ->  ( ( (/) 
.o  y )  +o  (/) )  =  (/) )
15 peano1 4804 . . . . 5  |-  (/)  e.  om
16 nnmsuc 6786 . . . . 5  |-  ( (
(/)  e.  om  /\  y  e.  om )  ->  ( (/) 
.o  suc  y )  =  ( ( (/)  .o  y )  +o  (/) ) )
1715, 16mpan 652 . . . 4  |-  ( y  e.  om  ->  ( (/) 
.o  suc  y )  =  ( ( (/)  .o  y )  +o  (/) ) )
1817eqeq1d 2395 . . 3  |-  ( y  e.  om  ->  (
( (/)  .o  suc  y
)  =  (/)  <->  ( ( (/) 
.o  y )  +o  (/) )  =  (/) ) )
1914, 18syl5ibr 213 . 2  |-  ( y  e.  om  ->  (
( (/)  .o  y )  =  (/)  ->  ( (/)  .o 
suc  y )  =  (/) ) )
202, 4, 6, 8, 9, 19finds 4811 1  |-  ( A  e.  om  ->  ( (/) 
.o  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   (/)c0 3571   Oncon0 4522   suc csuc 4524   omcom 4785  (class class class)co 6020    +o coa 6657    .o comu 6658
This theorem is referenced by:  nnmcom  6805  nnmord  6811  nnmwordi  6814
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-recs 6569  df-rdg 6604  df-oadd 6664  df-omul 6665
  Copyright terms: Public domain W3C validator