MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcan Unicode version

Theorem nnmcan 6863
Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmcan  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )

Proof of Theorem nnmcan
StepHypRef Expression
1 3anrot 941 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  <->  ( B  e.  om  /\  C  e. 
om  /\  A  e.  om ) )
2 nnmword 6862 . . . . 5  |-  ( ( ( B  e.  om  /\  C  e.  om  /\  A  e.  om )  /\  (/)  e.  A )  ->  ( B  C_  C 
<->  ( A  .o  B
)  C_  ( A  .o  C ) ) )
31, 2sylanb 459 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( B  C_  C 
<->  ( A  .o  B
)  C_  ( A  .o  C ) ) )
4 3anrev 947 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  <->  ( C  e.  om  /\  B  e. 
om  /\  A  e.  om ) )
5 nnmword 6862 . . . . 5  |-  ( ( ( C  e.  om  /\  B  e.  om  /\  A  e.  om )  /\  (/)  e.  A )  ->  ( C  C_  B 
<->  ( A  .o  C
)  C_  ( A  .o  B ) ) )
64, 5sylanb 459 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( C  C_  B 
<->  ( A  .o  C
)  C_  ( A  .o  B ) ) )
73, 6anbi12d 692 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( B 
C_  C  /\  C  C_  B )  <->  ( ( A  .o  B )  C_  ( A  .o  C
)  /\  ( A  .o  C )  C_  ( A  .o  B ) ) ) )
87bicomd 193 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( ( A  .o  B ) 
C_  ( A  .o  C )  /\  ( A  .o  C )  C_  ( A  .o  B
) )  <->  ( B  C_  C  /\  C  C_  B ) ) )
9 eqss 3350 . 2  |-  ( ( A  .o  B )  =  ( A  .o  C )  <->  ( ( A  .o  B )  C_  ( A  .o  C
)  /\  ( A  .o  C )  C_  ( A  .o  B ) ) )
10 eqss 3350 . 2  |-  ( B  =  C  <->  ( B  C_  C  /\  C  C_  B ) )
118, 9, 103bitr4g 280 1  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    C_ wss 3307   (/)c0 3615   omcom 4831  (class class class)co 6067    .o comu 6708
This theorem is referenced by:  mulcanpi  8761
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-recs 6619  df-rdg 6654  df-oadd 6714  df-omul 6715
  Copyright terms: Public domain W3C validator