MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcl Unicode version

Theorem nnmcl 6606
Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )

Proof of Theorem nnmcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5828 . . . . 5  |-  ( x  =  B  ->  ( A  .o  x )  =  ( A  .o  B
) )
21eleq1d 2350 . . . 4  |-  ( x  =  B  ->  (
( A  .o  x
)  e.  om  <->  ( A  .o  B )  e.  om ) )
32imbi2d 307 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  .o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  .o  B )  e.  om ) ) )
4 oveq2 5828 . . . . 5  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
54eleq1d 2350 . . . 4  |-  ( x  =  (/)  ->  ( ( A  .o  x )  e.  om  <->  ( A  .o  (/) )  e.  om ) )
6 oveq2 5828 . . . . 5  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
76eleq1d 2350 . . . 4  |-  ( x  =  y  ->  (
( A  .o  x
)  e.  om  <->  ( A  .o  y )  e.  om ) )
8 oveq2 5828 . . . . 5  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
98eleq1d 2350 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  .o  x )  e.  om  <->  ( A  .o  suc  y
)  e.  om )
)
10 nnm0 6599 . . . . 5  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
11 peano1 4674 . . . . 5  |-  (/)  e.  om
1210, 11syl6eqel 2372 . . . 4  |-  ( A  e.  om  ->  ( A  .o  (/) )  e.  om )
13 nnacl 6605 . . . . . . . 8  |-  ( ( ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( A  .o  y )  +o  A
)  e.  om )
1413expcom 424 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  .o  y
)  e.  om  ->  ( ( A  .o  y
)  +o  A )  e.  om ) )
1514adantr 451 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  y )  e.  om  ->  ( ( A  .o  y )  +o  A
)  e.  om )
)
16 nnmsuc 6601 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
1716eleq1d 2350 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  suc  y )  e.  om  <->  ( ( A  .o  y
)  +o  A )  e.  om ) )
1815, 17sylibrd 225 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  y )  e.  om  ->  ( A  .o  suc  y )  e.  om ) )
1918expcom 424 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  .o  y
)  e.  om  ->  ( A  .o  suc  y
)  e.  om )
) )
205, 7, 9, 12, 19finds2 4683 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  .o  x )  e.  om ) )
213, 20vtoclga 2850 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  .o  B )  e.  om ) )
2221impcom 419 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685   (/)c0 3456   suc csuc 4393   omcom 4655  (class class class)co 5820    +o coa 6472    .o comu 6473
This theorem is referenced by:  nnecl  6607  nnmcli  6609  nndi  6617  nnmass  6618  nnmsucr  6619  nnmordi  6625  nnmord  6626  nnmword  6627  omabslem  6640  nnneo  6645  nneob  6646  fin1a2lem4  8025  mulclpi  8513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-recs 6384  df-rdg 6419  df-oadd 6479  df-omul 6480
  Copyright terms: Public domain W3C validator