MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcom Structured version   Unicode version

Theorem nnmcom 6861
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcom  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( B  .o  A ) )

Proof of Theorem nnmcom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6080 . . . . 5  |-  ( x  =  A  ->  (
x  .o  B )  =  ( A  .o  B ) )
2 oveq2 6081 . . . . 5  |-  ( x  =  A  ->  ( B  .o  x )  =  ( B  .o  A
) )
31, 2eqeq12d 2449 . . . 4  |-  ( x  =  A  ->  (
( x  .o  B
)  =  ( B  .o  x )  <->  ( A  .o  B )  =  ( B  .o  A ) ) )
43imbi2d 308 . . 3  |-  ( x  =  A  ->  (
( B  e.  om  ->  ( x  .o  B
)  =  ( B  .o  x ) )  <-> 
( B  e.  om  ->  ( A  .o  B
)  =  ( B  .o  A ) ) ) )
5 oveq1 6080 . . . . 5  |-  ( x  =  (/)  ->  ( x  .o  B )  =  ( (/)  .o  B
) )
6 oveq2 6081 . . . . 5  |-  ( x  =  (/)  ->  ( B  .o  x )  =  ( B  .o  (/) ) )
75, 6eqeq12d 2449 . . . 4  |-  ( x  =  (/)  ->  ( ( x  .o  B )  =  ( B  .o  x )  <->  ( (/)  .o  B
)  =  ( B  .o  (/) ) ) )
8 oveq1 6080 . . . . 5  |-  ( x  =  y  ->  (
x  .o  B )  =  ( y  .o  B ) )
9 oveq2 6081 . . . . 5  |-  ( x  =  y  ->  ( B  .o  x )  =  ( B  .o  y
) )
108, 9eqeq12d 2449 . . . 4  |-  ( x  =  y  ->  (
( x  .o  B
)  =  ( B  .o  x )  <->  ( y  .o  B )  =  ( B  .o  y ) ) )
11 oveq1 6080 . . . . 5  |-  ( x  =  suc  y  -> 
( x  .o  B
)  =  ( suc  y  .o  B ) )
12 oveq2 6081 . . . . 5  |-  ( x  =  suc  y  -> 
( B  .o  x
)  =  ( B  .o  suc  y ) )
1311, 12eqeq12d 2449 . . . 4  |-  ( x  =  suc  y  -> 
( ( x  .o  B )  =  ( B  .o  x )  <-> 
( suc  y  .o  B )  =  ( B  .o  suc  y
) ) )
14 nnm0r 6845 . . . . 5  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  (/) )
15 nnm0 6840 . . . . 5  |-  ( B  e.  om  ->  ( B  .o  (/) )  =  (/) )
1614, 15eqtr4d 2470 . . . 4  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  ( B  .o  (/) ) )
17 oveq1 6080 . . . . . 6  |-  ( ( y  .o  B )  =  ( B  .o  y )  ->  (
( y  .o  B
)  +o  B )  =  ( ( B  .o  y )  +o  B ) )
18 nnmsucr 6860 . . . . . . 7  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( suc  y  .o  B )  =  ( ( y  .o  B
)  +o  B ) )
19 nnmsuc 6842 . . . . . . . 8  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
2019ancoms 440 . . . . . . 7  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
2118, 20eqeq12d 2449 . . . . . 6  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( suc  y  .o  B )  =  ( B  .o  suc  y
)  <->  ( ( y  .o  B )  +o  B )  =  ( ( B  .o  y
)  +o  B ) ) )
2217, 21syl5ibr 213 . . . . 5  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( y  .o  B )  =  ( B  .o  y )  ->  ( suc  y  .o  B )  =  ( B  .o  suc  y
) ) )
2322ex 424 . . . 4  |-  ( y  e.  om  ->  ( B  e.  om  ->  ( ( y  .o  B
)  =  ( B  .o  y )  -> 
( suc  y  .o  B )  =  ( B  .o  suc  y
) ) ) )
247, 10, 13, 16, 23finds2 4865 . . 3  |-  ( x  e.  om  ->  ( B  e.  om  ->  ( x  .o  B )  =  ( B  .o  x ) ) )
254, 24vtoclga 3009 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  .o  B )  =  ( B  .o  A ) ) )
2625imp 419 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( B  .o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   (/)c0 3620   suc csuc 4575   omcom 4837  (class class class)co 6073    +o coa 6713    .o comu 6714
This theorem is referenced by:  nnmwordri  6871  nn2m  6885  omopthlem1  6890  mulcompi  8765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-oadd 6720  df-omul 6721
  Copyright terms: Public domain W3C validator