MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmordi Unicode version

Theorem nnmordi 6631
Description: Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmordi  |-  ( ( ( B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )

Proof of Theorem nnmordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4668 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  om )  ->  A  e.  om )
21expcom 424 . . . . 5  |-  ( B  e.  om  ->  ( A  e.  B  ->  A  e.  om ) )
3 eleq2 2346 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
4 oveq2 5868 . . . . . . . . . . . 12  |-  ( x  =  B  ->  ( C  .o  x )  =  ( C  .o  B
) )
54eleq2d 2352 . . . . . . . . . . 11  |-  ( x  =  B  ->  (
( C  .o  A
)  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
63, 5imbi12d 311 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  B  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
76imbi2d 307 . . . . . . . . 9  |-  ( x  =  B  ->  (
( ( ( A  e.  om  /\  C  e.  om )  /\  (/)  e.  C
)  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x
) ) )  <->  ( (
( A  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
8 eleq2 2346 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
9 oveq2 5868 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( C  .o  x )  =  ( C  .o  (/) ) )
109eleq2d 2352 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( C  .o  A )  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  (/) ) ) )
118, 10imbi12d 311 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( A  e.  x  -> 
( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  (/)  ->  ( C  .o  A
)  e.  ( C  .o  (/) ) ) ) )
12 eleq2 2346 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
13 oveq2 5868 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( C  .o  x )  =  ( C  .o  y
) )
1413eleq2d 2352 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( C  .o  A
)  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  y ) ) )
1512, 14imbi12d 311 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )
16 eleq2 2346 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
17 oveq2 5868 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( C  .o  x
)  =  ( C  .o  suc  y ) )
1817eleq2d 2352 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( ( C  .o  A )  e.  ( C  .o  x )  <-> 
( C  .o  A
)  e.  ( C  .o  suc  y ) ) )
1916, 18imbi12d 311 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) )  <->  ( A  e. 
suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) )
20 noel 3461 . . . . . . . . . . . 12  |-  -.  A  e.  (/)
2120pm2.21i 123 . . . . . . . . . . 11  |-  ( A  e.  (/)  ->  ( C  .o  A )  e.  ( C  .o  (/) ) )
2221a1i 10 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  (/)  ->  ( C  .o  A )  e.  ( C  .o  (/) ) ) )
23 elsuci 4460 . . . . . . . . . . . . . . . 16  |-  ( A  e.  suc  y  -> 
( A  e.  y  \/  A  =  y ) )
24 nnmcl 6612 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  om  /\  y  e.  om )  ->  ( C  .o  y
)  e.  om )
25 simpl 443 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  om  /\  y  e.  om )  ->  C  e.  om )
2624, 25jca 518 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  om  /\  y  e.  om )  ->  ( ( C  .o  y )  e.  om  /\  C  e.  om )
)
27 nnaword1 6629 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( C  .o  y
)  e.  om  /\  C  e.  om )  ->  ( C  .o  y
)  C_  ( ( C  .o  y )  +o  C ) )
2827sseld 3181 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( C  .o  y
)  e.  om  /\  C  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
2928imim2d 48 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  y
)  e.  om  /\  C  e.  om )  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) ) )
3029imp 418 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) )  ->  ( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C ) ) )
3130adantrl 696 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
32 nna0 6604 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( C  .o  y )  e.  om  ->  (
( C  .o  y
)  +o  (/) )  =  ( C  .o  y
) )
3332ad2antrr 706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  y )  +o  (/) )  =  ( C  .o  y ) )
34 nnaordi 6618 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( C  e.  om  /\  ( C  .o  y
)  e.  om )  ->  ( (/)  e.  C  ->  ( ( C  .o  y )  +o  (/) )  e.  ( ( C  .o  y )  +o  C
) ) )
3534ancoms 439 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( C  .o  y
)  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  ->  ( ( C  .o  y )  +o  (/) )  e.  ( ( C  .o  y )  +o  C
) ) )
3635imp 418 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  y )  +o  (/) )  e.  (
( C  .o  y
)  +o  C ) )
3733, 36eqeltrrd 2360 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  y )  e.  ( ( C  .o  y
)  +o  C ) )
38 oveq2 5868 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  =  y  ->  ( C  .o  A )  =  ( C  .o  y
) )
3938eleq1d 2351 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  =  y  ->  (
( C  .o  A
)  e.  ( ( C  .o  y )  +o  C )  <->  ( C  .o  y )  e.  ( ( C  .o  y
)  +o  C ) ) )
4037, 39syl5ibrcom 213 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  =  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4140adantrr 697 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  =  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4231, 41jaod 369 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) )
4326, 42sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  om  /\  y  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) )
4423, 43syl5 28 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  om  /\  y  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
45 nnmsuc 6607 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  om  /\  y  e.  om )  ->  ( C  .o  suc  y )  =  ( ( C  .o  y
)  +o  C ) )
4645eleq2d 2352 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  om  /\  y  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  suc  y
)  <->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4746adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  om  /\  y  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( C  .o  A )  e.  ( C  .o  suc  y
)  <->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4844, 47sylibrd 225 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  om  /\  y  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y
) ) )
4948exp43 595 . . . . . . . . . . . . 13  |-  ( C  e.  om  ->  (
y  e.  om  ->  (
(/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
5049com12 27 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
5150adantld 453 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( A  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
5251imp3a 420 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
( ( A  e. 
om  /\  C  e.  om )  /\  (/)  e.  C
)  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y
) ) ) ) )
5311, 15, 19, 22, 52finds2 4686 . . . . . . . . 9  |-  ( x  e.  om  ->  (
( ( A  e. 
om  /\  C  e.  om )  /\  (/)  e.  C
)  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x
) ) ) )
547, 53vtoclga 2851 . . . . . . . 8  |-  ( B  e.  om  ->  (
( ( A  e. 
om  /\  C  e.  om )  /\  (/)  e.  C
)  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B
) ) ) )
5554com23 72 . . . . . . 7  |-  ( B  e.  om  ->  ( A  e.  B  ->  ( ( ( A  e. 
om  /\  C  e.  om )  /\  (/)  e.  C
)  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
5655exp4a 589 . . . . . 6  |-  ( B  e.  om  ->  ( A  e.  B  ->  ( ( A  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) ) )
5756exp4a 589 . . . . 5  |-  ( B  e.  om  ->  ( A  e.  B  ->  ( A  e.  om  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) ) )
582, 57mpdd 36 . . . 4  |-  ( B  e.  om  ->  ( A  e.  B  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
5958com34 77 . . 3  |-  ( B  e.  om  ->  ( A  e.  B  ->  (
(/)  e.  C  ->  ( C  e.  om  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
6059com24 81 . 2  |-  ( B  e.  om  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( A  e.  B  -> 
( C  .o  A
)  e.  ( C  .o  B ) ) ) ) )
6160imp31 421 1  |-  ( ( ( B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1625    e. wcel 1686   (/)c0 3457   suc csuc 4396   omcom 4658  (class class class)co 5860    +o coa 6478    .o comu 6479
This theorem is referenced by:  nnmord  6632  mulclpi  8519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-recs 6390  df-rdg 6425  df-oadd 6485  df-omul 6486
  Copyright terms: Public domain W3C validator