MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmword Unicode version

Theorem nnmword 6626
Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmword  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( C  .o  A
)  C_  ( C  .o  B ) ) )

Proof of Theorem nnmword
StepHypRef Expression
1 iba 491 . . . 4  |-  ( (/)  e.  C  ->  ( B  e.  A  <->  ( B  e.  A  /\  (/)  e.  C
) ) )
2 nnmord 6625 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om  /\  C  e.  om )  ->  (
( B  e.  A  /\  (/)  e.  C )  <-> 
( C  .o  B
)  e.  ( C  .o  A ) ) )
323com12 1157 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( B  e.  A  /\  (/)  e.  C )  <-> 
( C  .o  B
)  e.  ( C  .o  A ) ) )
41, 3sylan9bbr 683 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( B  e.  A  <->  ( C  .o  B )  e.  ( C  .o  A ) ) )
54notbid 287 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( -.  B  e.  A  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
6 simpl1 960 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  A  e.  om )
7 nnon 4661 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
86, 7syl 17 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  A  e.  On )
9 simpl2 961 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  B  e.  om )
10 nnon 4661 . . . 4  |-  ( B  e.  om  ->  B  e.  On )
119, 10syl 17 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  B  e.  On )
12 ontri1 4425 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
138, 11, 12syl2anc 644 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  -.  B  e.  A
) )
14 simpl3 962 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  C  e.  om )
15 nnmcl 6605 . . . . 5  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  .o  A
)  e.  om )
1614, 6, 15syl2anc 644 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  om )
17 nnon 4661 . . . 4  |-  ( ( C  .o  A )  e.  om  ->  ( C  .o  A )  e.  On )
1816, 17syl 17 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  On )
19 nnmcl 6605 . . . . 5  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  .o  B
)  e.  om )
2014, 9, 19syl2anc 644 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  B )  e.  om )
21 nnon 4661 . . . 4  |-  ( ( C  .o  B )  e.  om  ->  ( C  .o  B )  e.  On )
2220, 21syl 17 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  B )  e.  On )
23 ontri1 4425 . . 3  |-  ( ( ( C  .o  A
)  e.  On  /\  ( C  .o  B
)  e.  On )  ->  ( ( C  .o  A )  C_  ( C  .o  B
)  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
2418, 22, 23syl2anc 644 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  C_  ( C  .o  B
)  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
255, 13, 243bitr4d 278 1  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( C  .o  A
)  C_  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    e. wcel 1685    C_ wss 3153   (/)c0 3456   Oncon0 4391   omcom 4655  (class class class)co 5819    .o comu 6472
This theorem is referenced by:  nnmcan  6627  nnmwordi  6628
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-oadd 6478  df-omul 6479
  Copyright terms: Public domain W3C validator