MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmwordri Unicode version

Theorem nnmwordri 6636
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmwordri  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  ->  ( A  .o  C )  C_  ( B  .o  C
) ) )

Proof of Theorem nnmwordri
StepHypRef Expression
1 nnmwordi 6635 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  ->  ( C  .o  A )  C_  ( C  .o  B
) ) )
2 nnmcom 6626 . . . 4  |-  ( ( A  e.  om  /\  C  e.  om )  ->  ( A  .o  C
)  =  ( C  .o  A ) )
323adant2 974 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  C )  =  ( C  .o  A
) )
4 nnmcom 6626 . . . 4  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( B  .o  C
)  =  ( C  .o  B ) )
543adant1 973 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( B  .o  C )  =  ( C  .o  B
) )
63, 5sseq12d 3209 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  .o  C
)  C_  ( B  .o  C )  <->  ( C  .o  A )  C_  ( C  .o  B ) ) )
71, 6sylibrd 225 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  ->  ( A  .o  C )  C_  ( B  .o  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1625    e. wcel 1686    C_ wss 3154   omcom 4658  (class class class)co 5860    .o comu 6479
This theorem is referenced by:  omopthlem1  6655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-recs 6390  df-rdg 6425  df-oadd 6485  df-omul 6486
  Copyright terms: Public domain W3C validator