MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsdom Unicode version

Theorem nnsdom 7356
Description: A natural number is strictly dominated by the set of natural numbers. Example 3 of [Enderton] p. 146. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
nnsdom  |-  ( A  e.  om  ->  A  ~<  om )

Proof of Theorem nnsdom
StepHypRef Expression
1 omex 7346 . 2  |-  om  e.  _V
2 nnsdomg 7118 . 2  |-  ( ( om  e.  _V  /\  A  e.  om )  ->  A  ~<  om )
31, 2mpan 651 1  |-  ( A  e.  om  ->  A  ~<  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1686   _Vcvv 2790   class class class wbr 4025   omcom 4658    ~< csdm 6864
This theorem is referenced by:  cardom  7621  infxpenlem  7643  infcdaabs  7834  cflim2  7891  canthp1lem2  8277
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869
  Copyright terms: Public domain W3C validator