MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunb Unicode version

Theorem nnunb 9893
Description: The set of natural numbers is unbounded above. Theorem I.28 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
nnunb  |-  -.  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x )
Distinct variable group:    x, y

Proof of Theorem nnunb
StepHypRef Expression
1 pm3.24 857 . . . 4  |-  -.  ( A. y  e.  NN  -.  x  <  y  /\  -.  A. y  e.  NN  -.  x  <  y )
2 peano2rem 9046 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
3 ltm1 9529 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  -  1 )  <  x )
4 ovex 5782 . . . . . . . . . . . . 13  |-  ( x  -  1 )  e. 
_V
5 eleq1 2316 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
y  e.  RR  <->  ( x  -  1 )  e.  RR ) )
6 breq1 3966 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  (
y  <  x  <->  ( x  -  1 )  < 
x ) )
7 breq1 3966 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( x  - 
1 )  ->  (
y  <  z  <->  ( x  -  1 )  < 
z ) )
87rexbidv 2535 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  ( E. z  e.  NN  y  <  z  <->  E. z  e.  NN  ( x  - 
1 )  <  z
) )
96, 8imbi12d 313 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
( y  <  x  ->  E. z  e.  NN  y  <  z )  <->  ( (
x  -  1 )  <  x  ->  E. z  e.  NN  ( x  - 
1 )  <  z
) ) )
105, 9imbi12d 313 . . . . . . . . . . . . 13  |-  ( y  =  ( x  - 
1 )  ->  (
( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z ) )  <-> 
( ( x  - 
1 )  e.  RR  ->  ( ( x  - 
1 )  <  x  ->  E. z  e.  NN  ( x  -  1
)  <  z )
) ) )
114, 10cla4v 2825 . . . . . . . . . . . 12  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
( x  -  1 )  e.  RR  ->  ( ( x  -  1 )  <  x  ->  E. z  e.  NN  ( x  -  1
)  <  z )
) )
123, 11syl7 65 . . . . . . . . . . 11  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
( x  -  1 )  e.  RR  ->  ( x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) ) )
132, 12syl5 30 . . . . . . . . . 10  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  ( x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) ) )
1413pm2.43d 46 . . . . . . . . 9  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) )
15 df-rex 2521 . . . . . . . . 9  |-  ( E. z  e.  NN  (
x  -  1 )  <  z  <->  E. z
( z  e.  NN  /\  ( x  -  1 )  <  z ) )
1614, 15syl6ib 219 . . . . . . . 8  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z ) ) )
1716com12 29 . . . . . . 7  |-  ( x  e.  RR  ->  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  E. z
( z  e.  NN  /\  ( x  -  1 )  <  z ) ) )
18 nnre 9686 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  RR )
19 1re 8770 . . . . . . . . . . . 12  |-  1  e.  RR
20 ltsubadd 9177 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  1  e.  RR  /\  z  e.  RR )  ->  (
( x  -  1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2119, 20mp3an2 1270 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( ( x  - 
1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2218, 21sylan2 462 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  z  e.  NN )  ->  ( ( x  - 
1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2322pm5.32da 625 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( z  e.  NN  /\  ( x  -  1 )  <  z )  <-> 
( z  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
2423exbidv 2006 . . . . . . . 8  |-  ( x  e.  RR  ->  ( E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z )  <->  E. z
( z  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
25 peano2nn 9691 . . . . . . . . . 10  |-  ( z  e.  NN  ->  (
z  +  1 )  e.  NN )
26 ovex 5782 . . . . . . . . . . 11  |-  ( z  +  1 )  e. 
_V
27 eleq1 2316 . . . . . . . . . . . 12  |-  ( y  =  ( z  +  1 )  ->  (
y  e.  NN  <->  ( z  +  1 )  e.  NN ) )
28 breq2 3967 . . . . . . . . . . . 12  |-  ( y  =  ( z  +  1 )  ->  (
x  <  y  <->  x  <  ( z  +  1 ) ) )
2927, 28anbi12d 694 . . . . . . . . . . 11  |-  ( y  =  ( z  +  1 )  ->  (
( y  e.  NN  /\  x  <  y )  <-> 
( ( z  +  1 )  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
3026, 29cla4ev 2826 . . . . . . . . . 10  |-  ( ( ( z  +  1 )  e.  NN  /\  x  <  ( z  +  1 ) )  ->  E. y ( y  e.  NN  /\  x  < 
y ) )
3125, 30sylan 459 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  x  <  ( z  +  1 ) )  ->  E. y ( y  e.  NN  /\  x  < 
y ) )
3231exlimiv 2024 . . . . . . . 8  |-  ( E. z ( z  e.  NN  /\  x  < 
( z  +  1 ) )  ->  E. y
( y  e.  NN  /\  x  <  y ) )
3324, 32syl6bi 221 . . . . . . 7  |-  ( x  e.  RR  ->  ( E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z )  ->  E. y
( y  e.  NN  /\  x  <  y ) ) )
3417, 33syld 42 . . . . . 6  |-  ( x  e.  RR  ->  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  E. y
( y  e.  NN  /\  x  <  y ) ) )
35 df-ral 2520 . . . . . 6  |-  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z )  <->  A. y
( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
36 df-ral 2520 . . . . . . . 8  |-  ( A. y  e.  NN  -.  x  <  y  <->  A. y
( y  e.  NN  ->  -.  x  <  y
) )
37 alinexa 1576 . . . . . . . 8  |-  ( A. y ( y  e.  NN  ->  -.  x  <  y )  <->  -.  E. y
( y  e.  NN  /\  x  <  y ) )
3836, 37bitr2i 243 . . . . . . 7  |-  ( -. 
E. y ( y  e.  NN  /\  x  <  y )  <->  A. y  e.  NN  -.  x  < 
y )
3938con1bii 323 . . . . . 6  |-  ( -. 
A. y  e.  NN  -.  x  <  y  <->  E. y
( y  e.  NN  /\  x  <  y ) )
4034, 35, 393imtr4g 263 . . . . 5  |-  ( x  e.  RR  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  NN  y  <  z )  ->  -.  A. y  e.  NN  -.  x  <  y ) )
4140anim2d 550 . . . 4  |-  ( x  e.  RR  ->  (
( A. y  e.  NN  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  NN  y  <  z
) )  ->  ( A. y  e.  NN  -.  x  <  y  /\  -.  A. y  e.  NN  -.  x  <  y ) ) )
421, 41mtoi 171 . . 3  |-  ( x  e.  RR  ->  -.  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
4342nrex 2616 . 2  |-  -.  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) )
44 nnssre 9683 . . 3  |-  NN  C_  RR
45 1nn 9690 . . . . 5  |-  1  e.  NN
46 n0i 3402 . . . . 5  |-  ( 1  e.  NN  ->  -.  NN  =  (/) )
4745, 46ax-mp 10 . . . 4  |-  -.  NN  =  (/)
48 df-ne 2421 . . . 4  |-  ( NN  =/=  (/)  <->  -.  NN  =  (/) )
4947, 48mpbir 202 . . 3  |-  NN  =/=  (/)
50 sup2 9643 . . 3  |-  ( ( NN  C_  RR  /\  NN  =/=  (/)  /\  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x ) )  ->  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
5144, 49, 50mp3an12 1272 . 2  |-  ( E. x  e.  RR  A. y  e.  NN  (
y  <  x  \/  y  =  x )  ->  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
5243, 51mto 169 1  |-  -.  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517    C_ wss 3094   (/)c0 3397   class class class wbr 3963  (class class class)co 5757   RRcr 8669   1c1 8671    + caddc 8673    < clt 8800    - cmin 8970   NNcn 9679
This theorem is referenced by:  arch  9894
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-n 9680
  Copyright terms: Public domain W3C validator