MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunb Unicode version

Theorem nnunb 9957
Description: The set of natural numbers is unbounded above. Theorem I.28 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
nnunb  |-  -.  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x )
Distinct variable group:    x, y

Proof of Theorem nnunb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pm3.24 852 . . . 4  |-  -.  ( A. y  e.  NN  -.  x  <  y  /\  -.  A. y  e.  NN  -.  x  <  y )
2 peano2rem 9109 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
3 ltm1 9592 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  -  1 )  <  x )
4 ovex 5845 . . . . . . . . . . . . 13  |-  ( x  -  1 )  e. 
_V
5 eleq1 2344 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
y  e.  RR  <->  ( x  -  1 )  e.  RR ) )
6 breq1 4027 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  (
y  <  x  <->  ( x  -  1 )  < 
x ) )
7 breq1 4027 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( x  - 
1 )  ->  (
y  <  z  <->  ( x  -  1 )  < 
z ) )
87rexbidv 2565 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  ( E. z  e.  NN  y  <  z  <->  E. z  e.  NN  ( x  - 
1 )  <  z
) )
96, 8imbi12d 311 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
( y  <  x  ->  E. z  e.  NN  y  <  z )  <->  ( (
x  -  1 )  <  x  ->  E. z  e.  NN  ( x  - 
1 )  <  z
) ) )
105, 9imbi12d 311 . . . . . . . . . . . . 13  |-  ( y  =  ( x  - 
1 )  ->  (
( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z ) )  <-> 
( ( x  - 
1 )  e.  RR  ->  ( ( x  - 
1 )  <  x  ->  E. z  e.  NN  ( x  -  1
)  <  z )
) ) )
114, 10spcv 2875 . . . . . . . . . . . 12  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
( x  -  1 )  e.  RR  ->  ( ( x  -  1 )  <  x  ->  E. z  e.  NN  ( x  -  1
)  <  z )
) )
123, 11syl7 63 . . . . . . . . . . 11  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
( x  -  1 )  e.  RR  ->  ( x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) ) )
132, 12syl5 28 . . . . . . . . . 10  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  ( x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) ) )
1413pm2.43d 44 . . . . . . . . 9  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) )
15 df-rex 2550 . . . . . . . . 9  |-  ( E. z  e.  NN  (
x  -  1 )  <  z  <->  E. z
( z  e.  NN  /\  ( x  -  1 )  <  z ) )
1614, 15syl6ib 217 . . . . . . . 8  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z ) ) )
1716com12 27 . . . . . . 7  |-  ( x  e.  RR  ->  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  E. z
( z  e.  NN  /\  ( x  -  1 )  <  z ) ) )
18 nnre 9749 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  RR )
19 1re 8833 . . . . . . . . . . . 12  |-  1  e.  RR
20 ltsubadd 9240 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  1  e.  RR  /\  z  e.  RR )  ->  (
( x  -  1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2119, 20mp3an2 1265 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( ( x  - 
1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2218, 21sylan2 460 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  z  e.  NN )  ->  ( ( x  - 
1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2322pm5.32da 622 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( z  e.  NN  /\  ( x  -  1 )  <  z )  <-> 
( z  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
2423exbidv 1612 . . . . . . . 8  |-  ( x  e.  RR  ->  ( E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z )  <->  E. z
( z  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
25 peano2nn 9754 . . . . . . . . . 10  |-  ( z  e.  NN  ->  (
z  +  1 )  e.  NN )
26 ovex 5845 . . . . . . . . . . 11  |-  ( z  +  1 )  e. 
_V
27 eleq1 2344 . . . . . . . . . . . 12  |-  ( y  =  ( z  +  1 )  ->  (
y  e.  NN  <->  ( z  +  1 )  e.  NN ) )
28 breq2 4028 . . . . . . . . . . . 12  |-  ( y  =  ( z  +  1 )  ->  (
x  <  y  <->  x  <  ( z  +  1 ) ) )
2927, 28anbi12d 691 . . . . . . . . . . 11  |-  ( y  =  ( z  +  1 )  ->  (
( y  e.  NN  /\  x  <  y )  <-> 
( ( z  +  1 )  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
3026, 29spcev 2876 . . . . . . . . . 10  |-  ( ( ( z  +  1 )  e.  NN  /\  x  <  ( z  +  1 ) )  ->  E. y ( y  e.  NN  /\  x  < 
y ) )
3125, 30sylan 457 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  x  <  ( z  +  1 ) )  ->  E. y ( y  e.  NN  /\  x  < 
y ) )
3231exlimiv 1667 . . . . . . . 8  |-  ( E. z ( z  e.  NN  /\  x  < 
( z  +  1 ) )  ->  E. y
( y  e.  NN  /\  x  <  y ) )
3324, 32syl6bi 219 . . . . . . 7  |-  ( x  e.  RR  ->  ( E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z )  ->  E. y
( y  e.  NN  /\  x  <  y ) ) )
3417, 33syld 40 . . . . . 6  |-  ( x  e.  RR  ->  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  E. y
( y  e.  NN  /\  x  <  y ) ) )
35 df-ral 2549 . . . . . 6  |-  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z )  <->  A. y
( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
36 df-ral 2549 . . . . . . . 8  |-  ( A. y  e.  NN  -.  x  <  y  <->  A. y
( y  e.  NN  ->  -.  x  <  y
) )
37 alinexa 1565 . . . . . . . 8  |-  ( A. y ( y  e.  NN  ->  -.  x  <  y )  <->  -.  E. y
( y  e.  NN  /\  x  <  y ) )
3836, 37bitr2i 241 . . . . . . 7  |-  ( -. 
E. y ( y  e.  NN  /\  x  <  y )  <->  A. y  e.  NN  -.  x  < 
y )
3938con1bii 321 . . . . . 6  |-  ( -. 
A. y  e.  NN  -.  x  <  y  <->  E. y
( y  e.  NN  /\  x  <  y ) )
4034, 35, 393imtr4g 261 . . . . 5  |-  ( x  e.  RR  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  NN  y  <  z )  ->  -.  A. y  e.  NN  -.  x  <  y ) )
4140anim2d 548 . . . 4  |-  ( x  e.  RR  ->  (
( A. y  e.  NN  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  NN  y  <  z
) )  ->  ( A. y  e.  NN  -.  x  <  y  /\  -.  A. y  e.  NN  -.  x  <  y ) ) )
421, 41mtoi 169 . . 3  |-  ( x  e.  RR  ->  -.  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
4342nrex 2646 . 2  |-  -.  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) )
44 nnssre 9746 . . 3  |-  NN  C_  RR
45 1nn 9753 . . . . 5  |-  1  e.  NN
46 n0i 3461 . . . . 5  |-  ( 1  e.  NN  ->  -.  NN  =  (/) )
4745, 46ax-mp 8 . . . 4  |-  -.  NN  =  (/)
48 df-ne 2449 . . . 4  |-  ( NN  =/=  (/)  <->  -.  NN  =  (/) )
4947, 48mpbir 200 . . 3  |-  NN  =/=  (/)
50 sup2 9706 . . 3  |-  ( ( NN  C_  RR  /\  NN  =/=  (/)  /\  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x ) )  ->  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
5144, 49, 50mp3an12 1267 . 2  |-  ( E. x  e.  RR  A. y  e.  NN  (
y  <  x  \/  y  =  x )  ->  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
5243, 51mto 167 1  |-  -.  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545    C_ wss 3153   (/)c0 3456   class class class wbr 4024  (class class class)co 5820   RRcr 8732   1c1 8734    + caddc 8736    < clt 8863    - cmin 9033   NNcn 9742
This theorem is referenced by:  arch  9958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743
  Copyright terms: Public domain W3C validator